HB
Hannes Bernien
Author with expertise in Quantum Information and Computation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(81% Open Access)
Cited by:
9,940
h-index:
26
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Heralded entanglement between solid-state qubits separated by three metres

Hannes Bernien et al.Apr 23, 2013
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. Besides being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled qubits can be used to establish private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, opening the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we present a key experiment towards the realization of long-distance quantum networks with solid-state quantum registers. We have entangled two electron spin qubits in diamond that are separated by a three-meter distance. We establish this entanglement using a robust protocol based on local creation of spin-photon entanglement and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, enabling deterministic long-distance teleportation, quantum repeaters and extended quantum networks.
0

High-fidelity projective read-out of a solid-state spin quantum register

Lucio Robledo et al.Sep 1, 2011
Initialization and readout of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. If the state of a multi-qubit register can be read out in a single shot, this enables further key resources such as quantum error correction and deterministic quantum teleportation, as well as direct investigation of quantum correlations (entanglement). While spins in solids are attractive candidates for scalable quantum information processing, thus far single-shot detection has only been achieved for isolated qubits. Here, we demonstrate preparation and measurement of a multi-spin quantum register by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity readout of the electronic spin associated with a single nitrogen-vacancy (NV) centre in diamond at low temperature, and exploit this readout to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto and subsequently measuring the electronic spin. Finally, we show compatibility with qubit control by demonstrating initialization, coherent manipulation, and single-shot readout in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for the first test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols.
0

Parallel Implementation of High-Fidelity Multiqubit Gates with Neutral Atoms

Harry Levine et al.Oct 22, 2019
We report the implementation of universal two- and three-qubit entangling gates on neutral-atom qubits encoded in long-lived hyperfine ground states. The gates are mediated by excitation to strongly interacting Rydberg states and are implemented in parallel on several clusters of atoms in a one-dimensional array of optical tweezers. Specifically, we realize the controlled-phase gate, enacted by a novel, fast protocol involving only global coupling of two qubits to Rydberg states. We benchmark this operation by preparing Bell states with fidelity F≥95.0(2)%, and extract gate fidelity ≥97.4(3)%, averaged across five atom pairs. In addition, we report a proof-of-principle implementation of the three-qubit Toffoli gate, in which two control atoms simultaneously constrain the behavior of one target atom. These experiments demonstrate key ingredients for high-fidelity quantum information processing in a scalable neutral-atom platform.Received 16 August 2019DOI:https://doi.org/10.1103/PhysRevLett.123.170503© 2019 American Physical SocietyPhysics Subject Headings (PhySH)Research AreasCoherent controlEntanglement productionQuantum gatesQuantum information with atoms & lightPhysical SystemsRydberg atoms & moleculesTechniquesOptical tweezersQuantum Information
0

Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator

Alexander Keesling et al.Apr 1, 2019
Quantum phase transitions (QPTs) involve transformations between different states of matter that are driven by quantum fluctuations1. These fluctuations play a dominant part in the quantum critical region surrounding the transition point, where the dynamics is governed by the universal properties associated with the QPT. Although time-dependent phenomena associated with classical, thermally driven phase transitions have been extensively studied in systems ranging from the early Universe to Bose–Einstein condensates2–5, understanding critical real-time dynamics in isolated, non-equilibrium quantum systems remains a challenge6. Here we use a Rydberg atom quantum simulator with programmable interactions to study the quantum critical dynamics associated with several distinct QPTs. By studying the growth of spatial correlations when crossing the QPT, we experimentally verify the quantum Kibble–Zurek mechanism (QKZM)7–9 for an Ising-type QPT, explore scaling universality and observe corrections beyond QKZM predictions. This approach is subsequently used to measure the critical exponents associated with chiral clock models10,11, providing new insights into exotic systems that were not previously understood and opening the door to precision studies of critical phenomena, simulations of lattice gauge theories12,13 and applications to quantum optimization14,15. A Rydberg atom quantum simulator with programmable interactions is used to experimentally verify the quantum Kibble–Zurek mechanism through the growth of spatial correlations during quantum phase transitions.
0

Decoherence-protected quantum gates for a hybrid solid-state spin register

Toeno Sar et al.Apr 1, 2012
Seamless integration of decoherence protection into quantum logic gates has enabled high-fidelity execution of a quantum algorithm with individual spins in a hybrid quantum system. Qubit decoherence, caused by uncontrolled interactions with the environment, presents a major obstacle to the large-scale implementation of scalable quantum technologies in the solid state. Dynamical decoupling — inducing fast qubit flips to average out unwanted interactions — is a powerful technique that can combat decoherence, but so far, it has been demonstrated mainly for idle qubits. For useful applications, quantum gate operations are also required, which poses a problem for dynamical decoupling that does not distinguish between interactions with the environment and with other qubits. Viatcheslav Dobrovitski and colleagues have overcome this constraint in a prototype hybrid qubit system consisting of an electron spin coupled to a nuclear spin, by precisely adapting time intervals between decoupling pulses. With their approach, they demonstrate that the qubits are protected from decoherence as accurately during gate operation as in their idle states. Protecting the dynamics of coupled quantum systems from decoherence by the environment is a key challenge for solid-state quantum information processing1,2. An idle quantum bit (qubit) can be efficiently insulated from the outside world by dynamical decoupling3, as has recently been demonstrated for individual solid-state qubits4,5,6,7,8,9. However, protecting qubit coherence during a multi-qubit gate is a non-trivial problem3,10,11: in general, the decoupling disrupts the interqubit dynamics and hence conflicts with gate operation. This problem is particularly salient for hybrid systems12,13,14,15,16,17,18,19,20,21,22, in which different types of qubit evolve and decohere at very different rates. Here we present the integration of dynamical decoupling into quantum gates for a standard hybrid system, the electron–nuclear spin register. Our design harnesses the internal resonance in the coupled-spin system to resolve the conflict between gate operation and decoupling. We experimentally demonstrate these gates using a two-qubit register in diamond operating at room temperature. Quantum tomography reveals that the qubits involved in the gate operation are protected as accurately as idle qubits. We also perform Grover’s quantum search algorithm1, and achieve fidelities of more than 90% even though the algorithm run-time exceeds the electron spin dephasing time by two orders of magnitude. Our results directly allow decoherence-protected interface gates between different types of solid-state qubit. Ultimately, quantum gates with integrated decoupling may reach the accuracy threshold for fault-tolerant quantum information processing with solid-state devices1,11.
Load More