YL
Yang Liu
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
55
(16% Open Access)
Cited by:
8,655
h-index:
98
/
i10-index:
442
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum

Lili He et al.Jul 14, 2010
Antifungal activities of zinc oxide nanoparticles (ZnO NPs) and their mode of action against two postharvest pathogenic fungi (Botrytis cinerea and Penicillium expansum) were investigated in this study. ZnO NPs with sizes of 70 ± 15 nm and concentrations of 0, 3, 6 and 12 mmol l(-1) were used. Traditional microbiological plating, scanning electron microscopy (SEM), and Raman spectroscopy were used to study antifungal activities of ZnO NPs and to characterize the changes in morphology and cellular compositions of fungal hyphae treated with ZnO NPs. Results show that ZnO NPs at concentrations greater than 3 mmol l(-1) can significantly inhibit the growth of B. cinerea and P. expansum. P. expansum was more sensitive to the treatment with ZnO NPs than B. cinerea. SEM images and Raman spectra indicate two different antifungal activities of ZnO NPs against B. cinerea and P. expansum. ZnO NPs inhibited the growth of B. cinerea by affecting cellular functions, which caused deformation in fungal hyphae. In comparison, ZnO NPs prevented the development of conidiophores and conidia of P. expansum, which eventually led to the death of fungal hyphae. These results suggest that ZnO NPs could be used as an effective fungicide in agricultural and food safety applications.
0

Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent

Weiping Xiong et al.Feb 3, 2018
Adsorption of tetracycline antibiotics from aqueous solutions by a multi-walled carbon nanotube (MWCNT) loaded iron metal-organic framework (MIL-53(Fe)) composite was studied. The adsorbent was characterized by environmental scanning electron microscope, energy dispersive X-ray spectroscopy, brunauer-emmett-teller, thermogravimetric analysis, X-ray diffraction, fourier transform infrared spectrum, and X-ray photoelectron spectrum. The adsorption kinetics of tetracycline hydrochloride (TCN), oxytetracycline hydrochloride (OTC), and chlortetracycline hydrochloride (CTC) were all well fitted to the pseudo-second-order equation as well as the adsorption isotherms could be well delineated via Langmuir equations. The main influencing factors such as pH and ionic strength were studied in detail. At initial pH of 7.0, maximum adsorption capacity of TCN, OTC and CTC on MWCNT/MIL-53(Fe) was 364.37, 325.59, 180.68 mg·g-1 at 25 °C, which was 1.25, 8.28 and 3.34 times than that of single MWCNT, respectively. The adsorption capacity of TCS for this adsorbent was in the order: TCN > OTC > CTC, which was determined by the adsorbate molecule magnitude. In addition, π-π adsorbate-adsorbent interactions played an important role during the adsorption process. The excellent reusability and great water stability indicated the potential application of this novel composite in the removal of TCS from aqueous solutions.
0

Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light

Wenjun Wang et al.Jul 2, 2019
Microbial contamination and antibiotic pollutions diffusely exist in wastewater system, and contaminated water poses a threat to public health. Therefore, there is a need to effectively remove biohazard and antibiotic contamination from wastewater systems. In this paper, sulfur doped carbon quantum dots (S-CQDs)/hollow tubular g-C3N4 photocatalyst (HTCN-C), prepared via ultrasonic assisted synthesis strategy, was regarded as an efficient catalyst for the degradation of antibiotic (tetracycline) and destruction of a typical Gram-negative bacterium (Escherichia coli) in imitated wastewater system. The unique structures of hollow tubular g-C3N4 and loading of modified carbon quantum dots enhanced electron transfer and charge separation, leading to a significant improvement in photocatalytic efficiency. Benefiting from these merits, the optimized catalysts (HTCN-C(2)) exhibited superior performance with a reaction rate of 0.0293 min−1 for tetracycline (TC) degradation and 99.99% destruction of Escherichia coli under visible-light irradiation. Moreover, the characterization of UV–Vis diffuse reflectance spectra, photoluminescence technique, transient photocurrent responses and electrochemical impedance spectroscopy also verified the good optical and electrochemical properties of resultant samples. Our current work indicates that HTCN-C has great potential in degradation of antibiotic and destruction of bacterium for practical wastewater treatment.
0

Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies

Sai Zhang et al.Feb 10, 2019
Novel visible-light-driven dual-oxygen-doped porous g-C3N4 (OPCN) photocatalysts were synthesized by a facile thermal copolymerization of urea and ammonium oxalate. The introduced O atoms were preferable to synchronously substitute for two sp2-hybridized N atoms in the para-positions (i.e., N1′ and N4′ sites) of the melem unit by forming dual-O-doped g-C3N4. Together with porous structures, OPCN exhibited enlarged specific surface area, narrowed band gap and expanded visible light response. The photocatalytic activity of the optimal OPCN was approximately 9 times higher than that of pure g-C3N4 for bisphenol A (BPA) removal under visible light irradiation, and efficient removal rates for various chlorophenols, phenols and dyes were also observed. Combined with experiments and DFT calculations, this dual-O-doped structure resulted in effective charge transfer and separation of OPCN under visible light irradiation by forming e− and h+-related conjugated delocalized systems on the surface, which contributed to its interfacial contact with organic pollutants and adsorbed O2. As a result, the degradation of BPA was readily induced by photoinduced h+ and then thoroughly mineralized by O2−. On the other hand, more O2− radicals were generated, which could also oxidize BPA directly due to their strong oxidation power. The superior stability and reusability of OPCN catalysts were also revealed during photoreaction. This work provides a novel viewpoint to fabricate high-performance nonmetal photocatalysts for wastewater treatment.
0

Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C3N4 under simulated sunlight irradiation: Kinetics, mechanism, and antibacterial activity elimination

Fengliang Wang et al.Jan 11, 2018
The occurrence of fluoroquinolones (FQs) in the ambient environment has raised serious concerns. In this study, the photocatalytic degradation kinetics and mechanism of ciprofloxacin (CIP) was investigated in ordered mesoporous g-C3N4 (ompg-C3N4). Under simulated sunlight irradiation, ompg-C3N4 exhibited a 2.9 fold more rapid reaction for CIP degradation than bulk g-C3N4. This enhancement may be attributed to the large specific surface area and effective charge separation of ompg-C3N4. The eradication of CIP followed the Langmuir–Hinshelwood (L–H) kinetics model, and surface reactions played a significant role during the photocatalysis process. Further study of reactive species (RSs) by both ESR technology and RSs scavenging experiments revealed that the superoxide anion radical (O2−) and photohole (h+) were primarily responsible for the degradation of CIP. Based on the identification of intermediates using liquid chromatography with tandem mass spectrometry (HPLC-MS/MS), and the prediction of reactive sites via Frontier Electron Densities (FEDs), the degradation pathways of CIP were proposed. A comparison of the degradation among FQs revealed that the piperazine moiety showed a dramatic effect on the degradation of FQs during the photocatalysis process. A residual antibiotic activity experiment revealed that ompg-C3N4 provided a very desirable performance for the reduction of antibiotic activity. The sufficient photocatalytic degradation of CIP in ambient water revealed that a sunlight-driven ompg-C3N4 photocatalytic process may be efficiently applied for the remediation of CIP contaminated natural waters.
Load More