YY
Yang Yang
Author with expertise in Metasurfaces for Antenna and Radar Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
932
h-index:
25
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Composition and structure control of ultralight graphene foam for high-performance microwave absorption

Yi Zhang et al.Apr 30, 2016
Macroscopic lossy foam has been expected to be the most promising candidate for lightweight high-performance microwave absorption (MA). However, inferior MA behaviors of conventional foams reported previously are disappointing. The emerging graphene foam (GF) has broken this paradoxical state of affairs. Here, series of GFs with various chemical compositions and physical structures have been prepared via a facile and controllable method and their MA performance is investigated in 2–18 GHz. The in-depth analyses of the GF’s composition, structure and MA property demonstrate that the MA performance of the GF is strongly correlated with the C/O ratio, conjugated carbon domain size and graphene framework’s microstructure. A maximum absorption value of −34.0 dB as well as 14.3 GHz qualified bandwidth with reflection loss below −10 dB is achieved for the GF with an ultralow bulk density of 1.6 mg/cm3, of which the average absorption intensity and the specific MA efficiency are much higher than those of the best available MA materials in previous literature. The composition & structure–performance relationship of MA foams is revealed. The balance between small interfacial impedance gap and high loss characteristic has wide implications in improving the MA performance of the GF and other porous materials.
0

Tuning the Multilevel Hierarchical Microarchitecture of MXene/rGO‐Based Aerogels Through a Magnetic Field‐Guided Strategy Toward Stepwise Enhanced Electromagnetic Wave Dissipation

Yang Yang et al.Jun 5, 2024
Abstract Hierarchical microarchitecture engineering is a state‐of‐the‐art approach to designing aerogel electromagnetic (EM) wave absorbers, offering huge potential in improving EM energy dissipation. However, the intrinsic feedback mechanism regarding the specific influence of each microarchitecture parameter on EM properties is not comprehensively revealed, making it challenging to fully utilize the potential of aerogels to achieve superior EM wave absorption performance. Herein, a range of MXene/rGO‐based aerogels with multilevel hierarchical configurations are fabricated by a magnetic field‐guided strategy. Leveraging growth thermodynamics effects under a magnetic field and bridging effect between adjacent rGO units, three hierarchical microarchitecture models (lamellae ordering, interlayer spacing, and layer thickness) are constructed in aerogels. Remarkably, three models progressively improve reflection loss ( RL ), effective absorption bandwidth (EAB), and matching thickness by enhancing dielectric loss, decoupling attenuation‐impedance matching, and adjusting power loss density, respectively. Consequently, the MXene/rGO‐based aerogels exhibit stepwise enhancement in EM wave performance, achieving a superior RL of −64.6 dB and a broad EAB of 7.0 GHz at 1.8 mm thickness, surpassing alternative aerogels with other configurations. This work elucidates the effect of multilevel hierarchical microarchitecture on the synergistic multi‐effect dissipation mechanism of EM waves in aerogels, providing insights for designing advanced EM absorbers through diverse strategies.
0

Tailored Magnetic Spatial Confinement with Enhanced Polarization and Magnetic Response for Electromagnetic Wave Absorption

Lixin Li et al.Aug 1, 2024
Abstract For materials with coexisting phases, the transition from a random to an ordered distribution of materials often generates new mechanisms. Although the magnetic confinement effect has improved the electromagnetic (EM) performance, the transition from random to ordered magnetic confinement positions remains a synthetic challenge, and the underlying mechanisms are still unclear. Herein, precise control of magnetic nanoparticles is achieved through a spatial confinement growth strategy, preparing five different modalities of magnetic confined carbon fiber materials, effectively inhibiting magnetic agglomeration. Systematic studies have shown that the magnetic confinement network can refine CoNi NPs size and enhance strong magnetic coupling interactions. Compared to CoNi@HCNFs on the hollow carbon fibers (HCNFs) outer surface, HCNFs@CoNi constructed on the inner surface induce stronger spatial charge polarization relaxation at the interface and exhibit stronger magnetic coupling interactions at the inner surface due to the high‐density magnetic coupling units at the micro/nanoscale, thereby respectively enhancing dielectric and magnetic losses. Remarkably, they achieve a minimum reflection loss (RL min ) of −64.54 dB and an absorption bandwidth of 5.60 GHz at a thickness of 1.77 mm. This work reveals the microscale mechanism of magnetic confinement‐induced different polarization relaxation and magnetic response, providing a new strategy for designing magnetic materials.