Organic materials have been widely used as the charge transport layers in perovskite solar cells due to their structural versatility and solution processability. However, their low surface energy usually causes unsatisfactory thin-film wettability in contact with the perovskite solution, which limits the interfacial performance of the photovoltaic devices. Although solvent post-treatment could occasionally regulate the wetting behavior of organic films, the mechanism of the solid–liquid interaction is still unclear. Here, we present evidence of a possible correlation between the solvent and the wettability of a conventional polymer, poly[bis(4-phenyl) (2,4,6-trimethylphenyl) amine] (PTAA), and reveal the critical roles of Hansen solubility parameters (HSPs) of solvents in wetting mechanisms. Our results suggest that the conventional solvent N,N-dimethylformamide (DMF) improves the wettability of PTAA by the morphological disruption mechanism but negatively impacts interfacial charge collection and stability. In contrast, 2-methoxyethanol (2-Me) with an appropriate HSP value induces the transformation of the PTAA configuration in an orderly manner, which simultaneously improves the wetting property and maintains the film topography. After careful optimization of the surface conformation of the PTAA film, both perovskite crystallization and interfacial compatibility have been enhanced. Benefiting from superior interfacial properties, the perovskite solar cells based on 2-Me deliver a champion efficiency of 24.15% compared to 21.4% for DMF-based ones. More encouragingly, the use of 2-Me minimizes the perovskite buried interfacial defects, enabling the unencapsulated devices to maintain about 95% of their initial efficiencies after light illumination for 1100 h. The present study demonstrates the high effectiveness of solvent–polymer interaction for adjusting interfacial properties and strengthening the robustness of perovskite solar cells.