SY
Shuai Yuan
Author with expertise in Chemistry and Applications of Metal-Organic Frameworks
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
32
(38% Open Access)
Cited by:
9,154
h-index:
77
/
i10-index:
183
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Topology-Guided Design and Syntheses of Highly Stable Mesoporous Porphyrinic Zirconium Metal–Organic Frameworks with High Surface Area

Tian‐Fu Liu et al.Dec 12, 2014
Through a topology-guided strategy, a series of Zr6-containing isoreticular porphyrinic metal–organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr8 cluster with a smaller Zr6 cluster in a topologically identical framework. The high connectivity of the Zr6 cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.
0

Controlled Hydrolysis of Metal–Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors

Zhenyu Xiao et al.May 23, 2019
Pseudomorphic conversion of metal-organic frameworks (MOFs) enables the fabrication of nanomaterials with well-defined porosities and morphologies for enhanced performances. However, the commonly reported calcination strategy usually requires high temperature to pyrolyze MOF particles and often results in uncontrolled growth of nanomaterials. Herein, we report the controlled alkaline hydrolysis of MOFs to produce layered double hydroxide (LDH) while maintaining the porosity and morphology of MOF particles. The preformed trinuclear M3(μ3-OH) (M = Ni2+ and Co2+) clusters in MOFs were demonstrated to be critical for the pseudomorphic transformation process. An isotopic tracing experiment revealed that the 18O-labeled M3(μ3-18OH) participated in the structural assembly of LDH, which avoided the leaching of metal cations and the subsequent uncontrolled growth of hydroxides. The resulting LDHs maintain the spherical morphology of MOF templates and possess a hierarchical porous structure with high surface area (BET surface area up to 201 m2·g-1), which is suitable for supercapacitor applications. As supercapacitor electrodes, the optimized LDH with the Ni:Co molar ratio of 7:3 shows a high specific capacitance (1652 F·g-1 at 1 A·g-1) and decent cycling performance, retaining almost 100% after 2000 cycles. Furthermore, the hydrolysis method allows the recycling of organic ligands and large-scale synthesis of LDH materials.
Load More