YL
Yun Li
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
94
(77% Open Access)
Cited by:
15,509
h-index:
82
/
i10-index:
267
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes

Yun Li et al.Nov 5, 2010
Abstract Genome‐wide association studies (GWAS) can identify common alleles that contribute to complex disease susceptibility. Despite the large number of SNPs assessed in each study, the effects of most common SNPs must be evaluated indirectly using either genotyped markers or haplotypes thereof as proxies. We have previously implemented a computationally efficient Markov Chain framework for genotype imputation and haplotyping in the freely available MaCH software package. The approach describes sampled chromosomes as mosaics of each other and uses available genotype and shotgun sequence data to estimate unobserved genotypes and haplotypes, together with useful measures of the quality of these estimates. Our approach is already widely used to facilitate comparison of results across studies as well as meta‐analyses of GWAS. Here, we use simulations and experimental genotypes to evaluate its accuracy and utility, considering choices of genotyping panels, reference panel configurations, and designs where genotyping is replaced with shotgun sequencing. Importantly, we show that genotype imputation not only facilitates cross study analyses but also increases power of genetic association studies. We show that genotype imputation of common variants using HapMap haplotypes as a reference is very accurate using either genome‐wide SNP data or smaller amounts of data typical in fine‐mapping studies. Furthermore, we show the approach is applicable in a variety of populations. Finally, we illustrate how association analyses of unobserved variants will benefit from ongoing advances such as larger HapMap reference panels and whole genome shotgun sequencing technologies. Genet. Epidemiol . 34: 816‐834, 2010. © 2010 Wiley‐Liss, Inc.
0
Citation1,866
0
Save
0

DNA methylation GrimAge strongly predicts lifespan and healthspan

Ake Lu et al.Jan 21, 2019
It was unknown whether plasma protein levels can be estimated based on DNA methylation (DNAm) levels, and if so, how the resulting surrogates can be consolidated into a powerful predictor of lifespan. We present here, seven DNAm-based estimators of plasma proteins including those of plasminogen activator inhibitor 1 (PAI-1) and growth differentiation factor 15. The resulting predictor of lifespan, DNAm GrimAge (in units of years), is a composite biomarker based on the seven DNAm surrogates and a DNAm-based estimator of smoking pack-years. Adjusting DNAm GrimAge for chronological age generated novel measure of epigenetic age acceleration, AgeAccelGrim.Using large scale validation data from thousands of individuals, we demonstrate that DNAm GrimAge stands out among existing epigenetic clocks in terms of its predictive ability for time-to-death (Cox regression P=2.0E-75), time-to-coronary heart disease (Cox P=6.2E-24), time-to-cancer (P= 1.3E-12), its strong relationship with computed tomography data for fatty liver/excess visceral fat, and age-at-menopause (P=1.6E-12). AgeAccelGrim is strongly associated with a host of age-related conditions including comorbidity count (P=3.45E-17). Similarly, age-adjusted DNAm PAI-1 levels are associated with lifespan (P=5.4E-28), comorbidity count (P= 7.3E-56) and type 2 diabetes (P=2.0E-26). These DNAm-based biomarkers show the expected relationship with lifestyle factors including healthy diet and educational attainment.Overall, these epigenetic biomarkers are expected to find many applications including human anti-aging studies.
0
Citation1,383
0
Save
0

Common variants at 30 loci contribute to polygenic dyslipidemia

Sekar Kathiresan et al.Dec 7, 2008
Sekar Kathiresan et al. report genome-wide association studies for polygenic dyslipidemia. From a meta-analysis of seven genome-wide association studies and follow-up in five replication studies, they identify 11 new genetic associations for LDL cholesterol, HDL cholesterol and triglycerides. Blood low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol and triglyceride levels are risk factors for cardiovascular disease. To dissect the polygenic basis of these traits, we conducted genome-wide association screens in 19,840 individuals and replication in up to 20,623 individuals. We identified 30 distinct loci associated with lipoprotein concentrations (each with P < 5 × 10−8), including 11 loci that reached genome-wide significance for the first time. The 11 newly defined loci include common variants associated with LDL cholesterol near ABCG8, MAFB, HNF1A and TIMD4; with HDL cholesterol near ANGPTL4, FADS1-FADS2-FADS3, HNF4A, LCAT, PLTP and TTC39B; and with triglycerides near AMAC1L2, FADS1-FADS2-FADS3 and PLTP. The proportion of individuals exceeding clinical cut points for high LDL cholesterol, low HDL cholesterol and high triglycerides varied according to an allelic dosage score (P < 10−15 for each trend). These results suggest that the cumulative effect of multiple common variants contributes to polygenic dyslipidemia.
0
Citation1,338
0
Save
0

Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma

John Chambers et al.Oct 16, 2011
John Chambers and colleagues report a genome-wide association study for markers of liver function. They identify 42 loci associated with concentrations of one or more liver enzymes in plasma, and use a range of functional genomic analyses to suggest candidate genes at these loci. Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10−8 to P = 10−190). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function.
0
Citation519
0
Save
0

Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies

Steve Horvath et al.Jul 26, 2018
DNA methylation (DNAm)-based biomarkers of aging have been developed for many tissues and organs. However, these biomarkers have sub-optimal accuracy in fibroblasts and other cell types used in ex vivo studies. To address this challenge, we developed a novel and highly robust DNAm age estimator (based on 391 CpGs) for human fibroblasts, keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin, blood, and saliva samples. High age correlations can also be observed in sorted neurons, glia, brain, liver, and even bone samples. Gestational age correlates with DNAm age in cord blood. When used on fibroblasts from Hutchinson Gilford Progeria Syndrome patients, this age estimator (referred to as the skin & blood clock) uncovered an epigenetic age acceleration with a magnitude that is below the sensitivity levels of other DNAm-based biomarkers. Furthermore, this highly sensitive age estimator accurately tracked the dynamic aging of cells cultured ex vivo and revealed that their proliferation is accompanied by a steady increase in epigenetic age. The skin & blood clock predicts lifespan and it relates to many age-related conditions. Overall, this biomarker is expected to become useful for forensic applications (e.g. blood or buccal swabs) and for a quantitative ex vivo human cell aging assay.
0
Citation476
0
Save
Load More