XL
Xiaodong Li
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
21
(19% Open Access)
Cited by:
3,795
h-index:
44
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Defect-Mediated Electron–Hole Separation in One-Unit-Cell ZnIn2S4 Layers for Boosted Solar-Driven CO2 Reduction

Hao Chen et al.May 17, 2017
The effect of defects on electron–hole separation is not always clear and is sometimes contradictory. Herein, we initially built clear models of two-dimensional atomic layers with tunable defect concentrations, and hence directly disclose the defect type and distribution at atomic level. As a prototype, defective one-unit-cell ZnIn2S4 atomic layers are successfully synthesized for the first time. Aberration-corrected scanning transmission electron microscopy directly manifests their distinct zinc vacancy concentrations, confirmed by positron annihilation spectrometry and electron spin resonance analysis. Density-functional calculations reveal that the presence of zinc vacancies ensures higher charge density and efficient carrier transport, verified by ultrafast photogenerated electron transfer time of ∼15 ps from the conduction band of ZnIn2S4 to the trap states. Ultrafast transient absorption spectroscopy manifests the higher zinc vacancy concentration that allows for ∼1.7-fold increase in average recovery lifetime, confirmed by surface photovoltage spectroscopy and PL spectroscopy analysis, which ensures promoted carrier separation rates. As a result, the one-unit-cell ZnIn2S4 layers with rich zinc vacancies exhibit a carbon monoxide formation rate of 33.2 μmol g–1 h–1, roughly 3.6 times higher than that of the one-unit-cell ZnIn2S4 layers with poor zinc vacancies, while the former's photocatalytic activity shows negligible loss after 24 h photocatalysis. This present work uncovers the role of defects in affecting electron–hole separation at atomic level, opening new opportunities for achieving highly efficient solar CO2 reduction performances.
0

Efficient Visible‐Light‐Driven CO2 Reduction Mediated by Defect‐Engineered BiOBr Atomic Layers

Ju Wu et al.May 15, 2018
Abstract Solar CO 2 reduction efficiency is largely limited by poor photoabsorption, sluggish electron–hole separation, and a high CO 2 activation barrier. Defect engineering was employed to optimize these crucial processes. As a prototype, BiOBr atomic layers were fabricated and abundant oxygen vacancies were deliberately created on their surfaces. X‐ray absorption near‐edge structure and electron paramagnetic resonance spectra confirm the formation of oxygen vacancies. Theoretical calculations reveal the creation of new defect levels resulting from the oxygen vacancies, which extends the photoresponse into the visible‐light region. The charge delocalization around the oxygen vacancies contributes to CO 2 conversion into COOH* intermediate, which was confirmed by in situ Fourier‐transform infrared spectroscopy. Surface photovoltage spectra and time‐resolved fluorescence emission decay spectra indicate that the introduced oxygen vacancies promote the separation of carriers. As a result, the oxygen‐deficient BiOBr atomic layers achieve visible‐light‐driven CO 2 reduction with a CO formation rate of 87.4 μmol g −1 h −1 , which was not only 20 and 24 times higher than that of BiOBr atomic layers and bulk BiOBr, respectively, but also outperformed most previously reported single photocatalysts under comparable conditions.
0

Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction

Hao Chen et al.Nov 16, 2017
Unraveling the role of surface oxide on affecting its native metal disulfide's CO2 photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS2 atomic layers with different oxidation degrees are successfully synthesized. In situ Fourier transform infrared spectroscopy spectra disclose the COOH* radical is the main intermediate, whereas density-functional-theory calculations reveal the COOH* formation is the rate-limiting step. The locally oxidized domains could serve as the highly catalytically active sites, which not only benefit for charge-carrier separation kinetics, verified by surface photovoltage spectra, but also result in electron localization on Sn atoms near the O atoms, thus lowering the activation energy barrier through stabilizing the COOH* intermediates. As a result, the mildly oxidized SnS2 atomic layers exhibit the carbon monoxide formation rate of 12.28 μmol g–1 h–1, roughly 2.3 and 2.6 times higher than those of the poorly oxidized SnS2 atomic layers and the SnS2 atomic layers under visible-light illumination. This work uncovers atomic-level insights into the correlation between oxidized sulfides and CO2 reduction property, paving a new way for obtaining high-efficiency CO2 photoreduction performances.
0

Efficient and Robust Carbon Dioxide Electroreduction Enabled by Atomically Dispersed Snδ+ Sites

Xiaolong Zu et al.Feb 21, 2019
Abstract Electrocatalytic CO 2 reduction at considerably low overpotentials still remains a great challenge. Here, a positively charged single‐atom metal electrocatalyst to largely reduce the overpotentials is designed and hence CO 2 electroreduction performance is accelerated. Taking the metal Sn as an example, kilogram‐scale single‐atom Sn δ + on N‐doped graphene is first fabricated by a quick freeze–vacuum drying–calcination method. Synchrotron‐radiation X‐ray absorption fine structure and high‐angle annular dark‐field scanning transmission electron microscopy demonstrate the atomically dispersed Sn atoms are positively charged, which enables CO 2 activation and protonation to proceed spontaneously through stabilizing CO 2 •− * and HCOO − *, affirmed by in situ Fourier transform infrared spectra and Gibbs free energy calculations. Furthermore, N‐doping facilitates the rate‐limiting formate desorption step, verified by the decreased desorption energy from 2.16 to 1.01 eV and the elongated SnHCOO − bond length. As an result, single‐atom Sn δ + on N‐doped graphene exhibits a very low onset overpotential down to 60 mV for formate production and shows a very large turnover frequency up to 11930 h −1 , while its electroreduction activity proceeds without deactivation even after 200 h. This work offers a new pathway for manipulating electrocatalytic performance.
Load More