AK
Anis Koubâa
Author with expertise in Simultaneous Localization and Mapping
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
1,641
h-index:
54
/
i10-index:
193
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

LSAR: Multi-UAV Collaboration for Search and Rescue Missions

Ebtehal Alotaibi et al.Jan 1, 2019
In this paper, we consider the use of a team of multiple unmanned aerial vehicles (UAVs) to accomplish a search and rescue (SAR) mission in the minimum time possible while saving the maximum number of people. A novel technique for the SAR problem is proposed and referred to as the layered search and rescue (LSAR) algorithm. The novelty of LSAR involves simulating real disasters to distribute SAR tasks among UAVs. The performance of LSAR is compared, in terms of percentage of rescued survivors and rescue and execution times, with the max-sum, auction-based, and locust-inspired approaches for multi UAV task allocation (LIAM) and opportunistic task allocation (OTA) schemes. The simulation results show that the UAVs running the LSAR algorithm on average rescue approximately 74% of the survivors, which is 8% higher than the next best algorithm (LIAM). Moreover, this percentage increases with the number of UAVs, almost linearly with the least slope, which means more scalability and coverage is obtained in comparison to other algorithms. In addition, the empirical cumulative distribution function of LSAR results shows that the percentages of rescued survivors clustered around the [78%-100%] range under an exponential curve, meaning most results are above 50%. In comparison, all the other algorithms have almost equal distributions of their percentage of rescued survivor results. Furthermore, because the LSAR algorithm focuses on the center of the disaster, it finds more survivors and rescues them faster than the other algorithms, with an average of 55%~77%. Moreover, most registered times to rescue survivors by LSAR are bounded by a time of 04:50:02 with 95% confidence for a one-month mission time.
0
Citation233
0
Save
0

Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey

Anis Koubâa et al.Jan 1, 2019
The micro air vehicle link (MAVLink in short) is a communication protocol for unmanned systems (e.g., drones and robots). It specifies a comprehensive set of messages exchanged between unmanned systems and ground stations. This protocol is used in major autopilot systems, mainly ArduPilot and PX4, and provides powerful features not only for monitoring and controlling unmanned systems missions but also for their integration into the Internet. However, there is no technical survey and/or tutorial in the literature that presents these features or explains how to make use of them. Most of the references are online tutorials and basic technical reports, and none of them presents comprehensive and systematic coverage of the protocol. In this paper, we address this gap, and we propose an overview of the MAVLink protocol, the difference between its versions, and it is potential in enabling Internet connectivity to unmanned systems. We also discuss the security aspects of the MAVLink. To the best of our knowledge, this is the first technical survey and tutorial on the MAVLink protocol, which represents an important reference for unmanned systems users and developers.
0

Review on Federated Learning for digital transformation in healthcare through big data analytics

Muhammad Babar et al.May 24, 2024
In recent years, Big Data Analytics (BDA) and Federated Learning (FL) have become increasingly essential in healthcare, potentially revolutionizing patient care and optimizing operational efficiency. Big data analytics has transformed the way the healthcare industry operates. It provides an opportunity to extract valuable insights from vast amounts of data that can lead to better healthcare outcomes and reduced healthcare costs. However, the use of big data in healthcare is often hindered by privacy concerns and the need to protect sensitive patient information. FL is an inventive machine learning scheme that addresses these concerns by enabling multiple organizations to collaboratively analyze large datasets without sharing sensitive patient information. This article offers a comprehensive review of the potential of FL to empower healthcare transformation through big data analytics. Furthermore, the article investigates the obstacles and possibilities related to healthcare FL, encompassing the requirement for uniformity, data quality, security, and trust and collaboration among healthcare stakeholders. Finally, the paper looks ahead to the prospects of FL in healthcare, including the potential for real-time monitoring, predictive modeling, and developing new healthcare models prioritizing prevention and wellness. This survey advances the state-of-the-art by comprehensively reviewing how FL can be effectively integrated with BDA to transform healthcare. It uniquely synthesizes current advancements, identifies key technological synergies, and outlines a robust framework for addressing privacy concerns and enhancing data interoperability in healthcare systems. This survey paper is intended for healthcare professionals, researchers, and policymakers interested in the potential of FL to transform the healthcare industry.
Load More