AV
Alberto Vomiero
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
22
(55% Open Access)
Cited by:
1,675
h-index:
61
/
i10-index:
221
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors

Elisabetta Comini et al.Jul 11, 2008
The continuous evolution of nanotechnology in these years led to the production of quasi-one dimensional (Q1D) structures in a variety of morphologies such as nanowires, core–shell nanowires, nanotubes, nanobelts, hierarchical structures, nanorods, nanorings. In particular, metal oxides (MOX) are attracting an increasing interest for both fundamental and applied science. MOX Q1D are crystalline structures with well-defined chemical composition, surface terminations, free from dislocation and other extended defects. In addition, nanowires may exhibit physical properties which are significantly different from their coarse-grained polycrystalline counterpart because of their nanosized dimensions. Surface effects dominate due to the increase of their specific surface, which leads to the enhancement of the surface related properties, such as catalytic activity or surface adsorption: key properties for superior chemical sensors production. High degree of crystallinity and atomic sharp terminations make nanowires very promising for the development of a new generation of gas sensors reducing instabilities, typical in polycrystalline systems, associated with grain coalescence and drift in electrical properties. These sensitive nanocrystals may be used as resistors, and in FET based or optical based gas sensors. This article presents an up-to-date review of Q1D metal oxide materials research for gas sensors application, due to the great research effort in the field it could not cover all the interesting works reported, the ones that, according to the authors, are going to contribute to this field’s further development were selected and described.
0

Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes

Antonio Braga et al.Feb 11, 2011
The use of narrow band gap semiconductors such as PbS may expand the light absorption range to the near-infrared region in quantum-dot-sensitized solar cells (QDSCs), increasing the generated photocurrent. However, the application of PbS as a sensitizer in QDSCs causes some problems of stability and high recombination. Here, we show that the direct growth of a CdS coating layer on previously deposited PbS by the simple method of successive ionic layer adsorption and reaction (SILAR) minimizes these problems. A remarkable short-circuit current density for PbS/CdS QDSCs is demonstrated, ∼11 mA/cm2, compared to that of PbS QDSCs, with photocurrents lower than 4 mA/cm2, using polysulfide electrolyte in both cells. The cell efficiency reached a promising 2.21% under 1 sun of simulated irradiation (AM1.5G, 100 mW/cm2). Enhancement of the solar cell performance beyond the arithmetic addition of the efficiencies of the single constituents (PbS and CdS) is demonstrated for the nanocomposite PbS/CdS configuration. PbS dramatically increases the obtained photocurrents, and the CdS coating stabilizes the solar cell behavior.
0

Near Infrared, Highly Efficient Luminescent Solar Concentrators

Yufeng Zhou et al.Mar 31, 2016
The fabrication of a low reabsorption emission loss, high efficient luminescent solar concentrator (LSC) is demonstrated by embedding near infrared (NIR) core/shell quantum dots (QDs) in a polymer matrix. An engineered Stokes shift in NIR core/shell PbS/CdS QDs is achieved via a cation exchange approach by varying the core size and shell thickness through the refined reaction parameters such as reaction time, temperature, precursor molar ratio, etc. The as‐synthesized core/shell QDs with high quantum yield (QY) and excellent chemical/photostability exhibit a large Stokes shift with respect to the bare PbS QDs due to the strong core‐to‐shell electrons leakage. The large‐area planar LSC based on core/shell QDs exhibits the highest value (6.1% with a geometric factor of 10) for optical efficiency compared to the bare NIR QD‐based LSCs and other reported NIR QD‐based LSCs. The suppression of emission loss and the broad absorption of PbS/CdS QDs offer a promising pathway to integrate LSCs and photovoltaic devices with good spectral matching, indicating that the proposed core/shell QDs are strong candidates for fabricating high efficiency semi‐transparent large‐area LSCs.
1

Carbon Dots for Photocatalytic Degradation of Aqueous Pollutants: Recent Advancements

Kamran Akbar et al.Jun 3, 2021
Abstract The immense progress of humanity on the technological, domestic, and industrial fronts comes at the cost of polluting the planet. Aquatic pollution is particularly dangerous since all life forms are directly linked to it. Each year tons of industrial and domestic pollutants make their way into aqueous systems. Efficient removal/degradation of these pollutants is of prime importance for the sustainable future. Among many technologies, photodegradation is an emerging and promising method for the successful removal of aqueous pollutants since it is powered by abundant solar light. The last decade had shown that carbon dots are among the most promising materials that can be utilized as an efficient tool to derive various solar‐driven chemical reactions. Carbon dots possess unique photophysical and chemical properties such as light‐harvesting over a broad‐spectrum region, upconversion photoluminescence, photosensitizers, chemical inertness, and bivalent redox character, etc. The ease of synthesis of carbon dots at low cost also contributes hugely to their utilizations as an efficient photocatalyst for the degradation of aqueous pollutants. This review summarizes the recent progress made in the field of photodegradation of aqueous pollutants with the aid of carbon dots and their hybrids, highlighting the critical role carbon dots can play in the field.
0

Unraveling the optoelectronic properties of CoSbx intrinsic selective solar absorber towards high-temperature surfaces

Anastasiia Taranova et al.Nov 10, 2023
Abstract The combination of the ability to absorb most of the solar radiation and simultaneously suppress infrared re-radiation allows selective solar absorbers (SSAs) to maximize solar energy to heat conversion, which is critical to several advanced applications. The intrinsic spectral selective materials are rare in nature and only a few demonstrated complete solar absorption. Typically, intrinsic materials exhibit high performances when integrated into complex multilayered solar absorber systems due to their limited spectral selectivity and solar absorption. In this study, we propose CoSb x (2 < x < 3) as a new exceptionally efficient SSA. Here we demonstrate that the low bandgap nature of CoSb x endows broadband solar absorption (0.96) over the solar spectral range and simultaneous low emissivity (0.18) in the mid-infrared region, resulting in a remarkable intrinsic spectral solar selectivity of 5.3. Under 1 sun illumination, the heat concentrates on the surface of the CoSb x thin film, and an impressive temperature of 101.7 °C is reached, demonstrating the highest value among reported intrinsic SSAs. Furthermore, the CoSb x was tested for solar water evaporation achieving an evaporation rate of 1.4 kg m −2 h −1 . This study could expand the use of narrow bandgap semiconductors as efficient intrinsic SSAs with high surface temperatures in solar applications.
0
Paper
Citation12
0
Save
0

Emerging Strategies to Achieve Interfacial Solar Water Evaporation Rate Greater than 3 kg·m-2·h-1 under One Sun Irradiation

Anastasiia Taranova et al.Jun 13, 2024
Solar water evaporation is vital for addressing global water scarcity, particularly in regions with limited freshwater. Through the utilization of photothermal materials, solar water evaporation harnesses solar radiation to generate heat, which in turn accelerates the evaporation of water, producing clean drinking water. Subsequently, the vapor is condensed to produce fresh water, offering a sustainable solution to water scarcity. This research field has garnered immense scientific interest, with over six thousand publications. Reported solar absorber evaporation rates exceed 100 kg m−2 h−1 under one sun irradiation, far surpassing the theoretical limit of 1.47 kg m−2 h−1 achievable on two-dimensional absorber surfaces, assuming constant latent heat at 2444 J g−1. This review addresses this significant discrepancy in theoretical and practical values. A cut-off of 3 kg m−2 h−1 (under one sun irradiation) is considered to narrow focus, facilitating analysis of high-rate evaporators. Critical challenges and factors contributing to high evaporation rates are discussed, providing comprehensive insights into field advancements.
Load More