ZY
Zhe Yang
Author with expertise in Advancements in Water Purification Technologies
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(6% Open Access)
Cited by:
3,522
h-index:
57
/
i10-index:
135
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tannic Acid/Fe3+ Nanoscaffold for Interfacial Polymerization: Toward Enhanced Nanofiltration Performance

Zhe Yang et al.Jul 25, 2018
Conventional thin-film composite (TFC) membranes suffer from the trade-off relationship between permeability and selectivity, known as the "upper bound". In this work, we report a high performance thin-film composite membrane prepared on a tannic acid (TA)-Fe nanoscaffold (TFCn) to overcome such upper bound. Specifically, a TA-Fe nanoscaffold was first coated onto a polysulfone substrate, followed by performing an interfacial polymerization reaction between trimesoyl chloride (TMC) and piperazine (PIP). The TA-Fe nanoscaffold enhanced the uptake of amine monomers and provided a platform for their controlled release. The smaller surface pore size of the TA-Fe coated substrate further eliminated the intrusion of polyamide into the substrate pores. The resulting membrane TFCn showed a water permeability of 19.6 ± 0.5 L m2– h–1 bar–1, which was an order of magnitude higher than that of control TFC membrane (2.2 ± 0.3 L m–2 h–1 bar–1). The formation of a more order polyamide rejection layer also significantly enhanced salt rejection (e.g., NaCl, MgCl2, Na2SO4, and MgSO4) and divalent to monovalent ion selectivity (e.g., NaCl/MgSO4). Compared to conventional TFC nanofiltration membranes, the novel TFCn membrane successfully overcame the longstanding permeability and selectivity trade-off. The current work paves a new avenue for fabricating high performance TFC membranes.
0

Hydrophilic Silver Nanoparticles Induce Selective Nanochannels in Thin Film Nanocomposite Polyamide Membranes

Zhe Yang et al.Apr 11, 2019
Thin-film nanocomposite (TFN) membranes have been widely studied over the past decade for their desalination applications. For some cases, the incorporation of nonporous hydrophilic nanofillers has been reported to greatly enhance membrane separation performance, yet the underlying mechanism is poorly understood. The current study systematically investigates TFN membranes incorporated with silver nanoparticles (AgNPs). For the first time, we reveal the formation of nanochannels of approximately 2.5 nm in size around the AgNPs, which can be attributed to the hydrolysis of trimesoyl chloride monomers and thus the termination of interfacial polymerization by the water layer around each hydrophilic nanoparticle. These nanochannels nearly tripled the membrane water permeability for the optimal membrane. In addition, this membrane showed increased rejection against NaCl, boron, and a set of small-molecular organic compounds (e.g., propylparaben, norfloxacin, and ofloxacin), thanks to its combined effects of improved size exclusion, enhanced Donnan exclusion, and suppressed hydrophobic interaction. Our work provides fundamental insights into the formation and transport mechanisms involved in solid-filler incorporated TFN membranes. Future studies should take advantage of this spontaneous nanochannel formation in the design of TFN to overcome the classical membrane permeability–selectivity trade-off.
0

In Situ Reduction of Silver by Polydopamine: A Novel Antimicrobial Modification of a Thin-Film Composite Polyamide Membrane

Zhe Yang et al.Aug 1, 2016
We report a facile method for the antimicrobial modification of a thin-film composite polyamide reverse osmosis (RO) membrane. The membrane surface was first coated with polydopamine (PDA), whose reducing catechol groups subsequently immobilized silver ions in situ to form uniformly dispersed silver nanoparticles (AgNPs) inside the coating layer. Agglomeration of AgNPs was not observed despite a high silver loading of 13.3 ± 0.3 μg/cm(2) (corresponding to a surface coverage of 18.5% by the nanoparticles). Both diffusion inhibition zone tests and colony formation unit tests showed clear antimicrobial effects of the silver loaded membranes on model bacteria Bacillus subtilis and Escherichia coli. Furthermore, the silver immobilized membrane had significantly enhanced salt rejection compared to the control PDA coated membrane, which is attributed to the preferential formation of AgNPs at defect sides within the PDA layer. This self-healing mechanism can be used to prepare antimicrobial RO membranes with improved salt rejection without scarifying the membrane permeability, which provides a new dimension for membrane surface modification.
Load More