XX
Xijin Xu
Author with expertise in Aqueous Zinc-Ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(6% Open Access)
Cited by:
2,709
h-index:
67
/
i10-index:
200
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ultrathin and Porous Ni3S2/CoNi2S4 3D‐Network Structure for Superhigh Energy Density Asymmetric Supercapacitors

Weidong He et al.Jul 17, 2017
Abstract 3D‐networked, ultrathin, and porous Ni 3 S 2 /CoNi 2 S 4 on Ni foam (NF) is successfully designed and synthesized by a simple sulfidation process from 3D Ni–Co precursors. Interestingly, the edge site‐enriched Ni 3 S 2 /CoNi 2 S 4 /NF 3D‐network is realized by the etching‐like effect of S 2− ions, which made the surfaces of Ni 3 S 2 /CoNi 2 S 4 /NF with a ridge‐like feature. The intriguing structural/compositional/componental advantages endow 3D‐networked‐free‐standing Ni 3 S 2 /CoNi 2 S 4 /NF electrodes better electrochemical performance with specific capacitance of 2435 F g −1 at a current density of 2 A g −1 and an excellent rate capability of 80% at 20 A g −1 . The corresponding asymmetric supercapacitor achieves a high energy density of 40.0 W h kg −1 at an superhigh power density of 17.3 kW kg −1 , excellent specific capacitance (175 F g −1 at 1A g −1 ), and electrochemical cycling stability (92.8% retention after 6000 cycles) with Ni 3 S 2 /CoNi 2 S 4 /NF as the positive electrode and activated carbon/NF as the negative electrode. Moreover, the temperature dependences of cyclic voltammetry curve polarization and specific capacitances are carefully investigated, and become more obvious and higher, respectively, with the increase of test temperature. These can be attributed to the components' synergetic effect assuring rich redox reactions, high conductivity as well as highly porous but robust architectures. This work provides a general, low‐cost route to produce high performance electrode materials for portable supercapacitor applications on a large scale.
0

ZnO and ZnS Nanostructures: Ultraviolet-Light Emitters, Lasers, and Sensors

Xiaosheng Fang et al.Nov 30, 2009
Abstract ZnO and ZnS, well-known direct bandgap II–VI semiconductors, are promising materials for photonic, optical, and electronic devices. Nanostructured materials have lent a leading edge to the next generation technology due to their distinguished performance and efficiency for device fabrication. As two of the most suitable materials with size- and dimensionality-dependent functional properties, wide bandgap semiconducting ZnO and ZnS nanostructures have attracted particular attention in recent years. For example, both materials have been assembled into nanometer-scale visible-light-blind ultraviolet (UV) light sensors with high sensitivity and selectivity, in addition to other applications such as field emitters and lasers. Their high-performance characteristics are particularly due to the high surface-to-volume ratios (SVR) and rationally designed surfaces. This article provides a comprehensive review of the state-of-the-art research activities in ZnO and ZnS nanostructures, including their syntheses and potential applications, with an emphasis on one-dimensional (1D) ZnO and ZnS nanostructure-based UV light emissions, lasers, and sensors. We begin with a survey of nanostructures, fundamental properties of ZnO and ZnS, and UV radiation–based applications. This is followed by detailed discussions on the recent progress of their synthesis, UV light emissions, lasers, and sensors. Additionally, developments of ZnS/ZnO composite nanostructures, including core/shell and heterostructures, are discussed and their novel optical properties are reviewed. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of ZnO and ZnS nanostructures on the current and future applications for UV light–based lasers and sensors. Keywords: ZnO and ZnS nanostructuresultraviolet light emissionslasers and sensorsphotodetectorsphotosensors or photoconductorsvisible-light-blind ultraviolet light sensorsoptical sensorsoxidesulfide ACKNOWLEDGMENTS This work was supported in part by the World Premier International Research Center (WPI) Initiative on Materials Nanoarchitectonics (MANA), MEXT, Japan. T. Y. Zhai thanks the Japan Society for the Promotion of Science (JSPS) for support in the form of a fellowship tenable at the National Institute for Materials Science (NIMS), Tsukuba, Japan. The authors are indebted to acknowledge the kind permission from the corresponding publishers/authors to reproduce their materials, especially figures, used in this review.
0

One-pot Synthesis of CdS Irregular Nanospheres Hybridized with Oxygen-Incorporated Defect-Rich MoS2 Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution

Shouwei Zhang et al.Jun 13, 2017
Robust and highly active photocatalysts, CdS@MoS2, for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS2 ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS2 displayed a quantum yield of ∼24.2% at 420 nm and the maximum H2 generation rate of ∼17203.7 umol/g/h using Na2S-Na2SO3 as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS2 as co-catalysts using Na2S-Na2SO3 as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS2 and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS2 provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H2 evolution and increases the electric conductivity of the MoS2. Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.
Load More