YL
Yue Liu
Author with expertise in Catalytic Conversion of Biomass to Fuels and Chemicals
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(18% Open Access)
Cited by:
3,375
h-index:
42
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Multi-path accelerating sulfadiazine degradation via peracetic acid oxidation induced by nanoconfined co species: Highlighting electron rearrangement effect

Yue Liu et al.Jun 15, 2024
Peroxyacetic acid (PAA) oxidation has received widespread concerns for organic pollutant degradation with low secondary pollution. Nanoconfinement is an effective means to enhance the REDOX process by regulating reactive oxygen species formation and shortening the mass transfer distance. Herein, nanoconfined Co species were encapsulated in carbon nanotubes (Co3O4-in-CNTs), with more active sites and faster electron transfer, and exhibited excellent catalytic capacity on PAA activation. Consequently, the PAA/Co3O4-in-CNTs system achieved 100 % removal of sulfadiazine (SDZ) within 5 min, which was kinetically 24 times faster than the unconfined one. CH3C(O)OO and CH3C(O)O were the vital contributors, and the Co(IV) and 1O2 created non-radical oxidation pathways via electron transfer. Theoretical calculations revealed that the electron delocalization around Co-active sites and electron rearrangement induced by nanoconfinement promoted the Co(IV), 1O2, CH3C(O)OO, and CH3C(O)O formation, thus accelerating SDZ removal process. Moreover, the PAA/Co3O4-in-CNTs system performed great stability under different environmental conditions.
0
Citation1
0
Save
0

Confined Ionic Environments Tailoring the Reactivity of Molecules in the Micropores of BEA-Type Zeolite

Sung Kim et al.Jun 18, 2024
In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol. As a result, the free-energy barrier of the reaction is lowered, leading to a marked increase in the reaction rates. Nonetheless, there is a limit to the reaction rate enhancement by the hydronium ion concentration. Experiments conducted with low concentrations of reactants show that beyond an optimal concentration, the required spatial rearrangement between hydronium ions and cyclohexanols inhibits further increases in the reaction rate, leading to a peak in the intrinsic activity of hydronium ions. The quantification of excess chemical potential in both initial and transition states for zeolites H-BEA, along with findings from HMFI, provides a basis to generalize and predict rates for hydronium-ion-catalyzed dehydration reactions in Brønsted zeolites.
Load More