PB
Pieter Beck
Author with expertise in Impacts of Climate Change on Glaciers and Water Availability
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
7,099
h-index:
45
/
i10-index:
70
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI

Pieter Beck et al.Dec 28, 2005
Current models of vegetation dynamics using the normalized vegetation index (NDVI) time series perform poorly for high-latitude environments. This is due partly to specific attributes of these environments, such as short growing season, long periods of darkness in winter, persistence of snow cover, and dominance of evergreen species, but also to the design of the models. We present a new method for monitoring vegetation activity at high latitudes, using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI. It estimates the NDVI of the vegetation during winter and applies a double logistic function, which is uniquely defined by six parameters that describe the yearly NDVI time series. Using NDVI data from 2000 to 2004, we illustrate the performance of this method for an area in northern Scandinavia (35 × 162 km2, 68° N 23° E) and compare it to existing methods based on Fourier series and asymmetric Gaussian functions. The double logistic functions describe the NDVI data better than both the Fourier series and the asymmetric Gaussian functions, as quantified by the root mean square errors. Compared with the method based on Fourier series, the new method does not overestimate the duration of the growing season. In addition, it handles outliers effectively and estimates parameters that are related to phenological events, such as the timing of spring and autumn. This makes the method most suitable for both estimating biophysical parameters and monitoring vegetation phenology.
0
Paper
Citation876
0
Save
0

Plant functional trait change across a warming tundra biome

Anne Bjorkman et al.Sep 25, 2018
The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature–trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming. Analyses of the relationships between temperature, moisture and seven key plant functional traits across the tundra and over time show that community height increased with warming across all sites, whereas other traits lagged behind predicted rates of change.
0
Paper
Citation532
0
Save
0

Climate sensitivity of shrub growth across the tundra biome

Isla Myers‐Smith et al.Jun 29, 2015
Rapid climate warming has been linked to increasing shrub dominance in the Arctic tundra. Research now shows that climate–shrub growth relationships vary spatially and according to site characteristics such as soil moisture and shrub height. Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1,2,3,4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5,6,7,8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting of multi-decadal time series of annual shrub growth provide an underused resource to explore climate–growth relationships. Here, we analyse circumpolar data from 37 Arctic and alpine sites in 9 countries, including 25 species, and ∼42,000 annual growth records from 1,821 individuals. Our analyses demonstrate that the sensitivity of shrub growth to climate was: (1) heterogeneous, with European sites showing greater summer temperature sensitivity than North American sites, and (2) higher at sites with greater soil moisture and for taller shrubs (for example, alders and willows) growing at their northern or upper elevational range edges. Across latitude, climate sensitivity of growth was greatest at the boundary between the Low and High Arctic, where permafrost is thawing4 and most of the global permafrost soil carbon pool is stored9. The observed variation in climate–shrub growth relationships should be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome.
0
Paper
Citation528
0
Save
0

Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

Pieter Beck et al.Oct 1, 2011
To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen–deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.
0
Paper
Citation314
0
Save
0

Seasonal and interannual variability of climate and vegetation indices across the Amazon

Paulo Brando et al.Aug 2, 2010
Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.
0
Paper
Citation280
0
Save
Load More