AK
Agnieszka Kupc
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
4,347
h-index:
33
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

J. Kirkby et al.Aug 1, 2011
A substantial source of cloud condensation nuclei in the atmospheric boundary layer is thought to originate from the nucleation of trace sulphuric acid vapour. Despite extensive research, we still lack a quantitative understanding of the nucleation mechanism and the possible role of cosmic rays, creating one of the largest uncertainties in atmospheric models and climate predictions. Jasper Kirkby and colleagues present the first results from the CLOUD experiment at CERN, which studies nucleation and other ion-aerosol cloud interactions under precisely controlled conditions. They find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume increase the nucleation rate of sulphuric acid particles by more than a factor of 100 to 1,000. They also find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere, but is negligible in the boundary layer and so additional species are necessary. Even with the large enhancements in rate caused by ammonia and ions, they conclude that atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary layer nucleation. Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5,6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.
0

Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere

João Almeida et al.Oct 4, 2013
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
0
Paper
Citation975
0
Save