RB
Rongjun Bian
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(40% Open Access)
Cited by:
2,460
h-index:
34
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles

Afeng Zhang et al.Dec 14, 2011
Biochar production and application from crop straw had been proposed as one effective countermeasure to mitigate climate change. We conducted a 2-year consecutive field experiment in 2009 and 2010 in rice paddy to gain insight into the consistency over years of biochar effects on rice production and greenhouse gases emissions. Biochar was amended in 2009 before rice transplanting at rates of 0, 10, 20 and 40 t ha−1, soil emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) were monitored with closed chamber method at 7 days interval throughout the whole rice growing season (WRGS) both in 2009 and 2010. The results showed that biochar amendment increased rice productivity, soil pH, soil organic carbon, total nitrogen but decreased soil bulk density in both cycles of rice growth. Soil respiration observed no significant difference between biochar amendment and the corresponding control both in the first and second cycle, respectively. However, biochar amendment decreased nitrous oxide emission but increased methane emission in both cycles. No significant difference in carbon intensity of rice production (GHGI) and global warming potential (GWP) were observed between the biochar amendment at the rate of 10 t ha−1 and 40 t ha−1 and control though the GWP and GHGI was increased by 39% and 26% at the rate of 20 t ha−1 respectively, in the first cycle. However, in the second cycle, both of overall GWP and GHGI were observed significantly decreased under biochar amendment as compared to control, ranging from 7.1% to 18.7% and from 12.4% to 34.8%, respectively. The biochar effect intensity on global warming potential were observed from −2.5% to 39.2% in the first cycle, and from −18.7% to −7.1% in the second cycle. However, the biochar effect intensity on C intensity of rice production was observed from −10.2% to 25.8% in the first cycle, and from −36.9% to −18.6% in the second cycle. Therefore, biochar effect on reducing the overall C intensity of rice production could become stronger in the subsequent cycles than that in the first cycle though a consistently strong effect on reducing N2O emission in a single crop cycle after biochar amendment. Nevertheless, these effects were not found in proportional to biochar amendment rates and a high rice yield but lowest C intensity was achieved under biochar amendment at 10 t ha−1 in both cycles of the rice paddy in the present study.
0
Paper
Citation574
0
Save
0

A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

Rongjun Bian et al.Mar 22, 2014
Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure.
0
Paper
Citation519
0
Save
0

Biochar bound urea boosts plant growth and reduces nitrogen leaching

Wei Shi et al.Sep 12, 2019
Over use of N fertilizers, most commonly as urea, had been seriously concerned as a major source of radiative N (Nr) for severe environment impacts through leaching, volatilization, and N2O emission from fertilized croplands. It had been well known that biochar could enhance N retention and use efficiency by crops in amended croplands. In this study, a granular biochar-mineral urea composite (Bio-MUC) was obtained by blending urea with green waste biochar supplemented with clay minerals of bentonite and sepiolite. This Bio-MUC material was firstly characterized by microscopic analyses with FTIR, SEM-EDS and STEM, subsequently tested for N leaching in water in column experiment and for N supply for maize in pot culture, compared to conventional urea fertilizer (UF). Microscopic analyses indicated binding of urea N to particle surfaces of biochar and clay minerals in the Bio-MUC composite. In the leaching experiment over 30 days, cumulative N release as NH4+-N and of dissolved organic carbon (DOC) was significantly smaller by >70% and by 8% from the Bio-MUC than from UF. In pot culture with maize growing for 50 days, total fresh shoot was enhanced by 14% but fresh root by 25% under Bio-MUC compared to UF. This study suggested that N in the Bio-MUC was shown slow releasing in water but maize growth promoting in soil, relative to conventional urea. Such effect could be related mainly to N retention by binding to biochar/mineral surfaces and partly by carbon bonds of urea to biochar in the Bio-MUC. Therefore, biochar from agro-wastes could be used for blending urea as combined organo/mineral urea to replace mineral urea so as to reduce N use and impacts on global Nr. Of course, how such biochar combined urea would impact N process in soil-plant systems deserve further field studies.
0

Changes in aggregate-associated carbon pools and chemical composition of topsoil organic matter following crop residue amendment in forms of straw, manure and biochar in a paddy soil

Shuotong Chen et al.Jul 13, 2024
In agricultural ecosystems, incorporation of crop residues has been practiced as a recycling approach for sustaining soil organic matter (SOM) and soil fertility. However, how crop residue amendments in different forms (direct straw return, converted as manure and pyrolyzed as biochar) affect soil organic carbon (SOC) pools and SOM composition is not well known. In this study, a short-term (2015–2019) field experiment in paddy soil was conducted with a one-time maize residue amendment, consistently in a single doses of 10 Mg ha−1 organic carbon (OC) equivalent, in three forms: air-dried straw (CS), cattle manure (CM) and biochar (CB). No residue amendment (CK) was used as control. Topsoil organic matter changes were analysed using 13C isotopic tracing, biomarker analysis, and solid-state 13C nuclear magnetic resonance spectroscopy in combination with soil aggregate density/size fractionation. After four cropping cycles following amendment, SOC content was unchanged under CS and CM but increased by 24% under CB; However, the OC pool ratio of particulate organic matter (POM) to mineral-associated organic matter (MAOM) significantly increased under all amendments compared to CK. The δ13C values indicated that maize-derived OC was preserved the most in the POM within the macroaggregates, particularly under CB. Regarding the molecular composition, all residue amendments increased the abundance ratio of plant- to microbe-derived lipids. Plant-derived lipids were primarily concentrated in macroaggregates, whereas microbial lipids were more prevalent in the silt–clay fractions. Lignin phenols were significantly enriched only in microaggregates under CS relative to CK. Overall, SOM changes in the paddy topsoil following crop residue amendment in different forms were depicted by OC pool redistribution and molecular composition alteration. The study highlighted that biochar amendment, instead of straw or manure, greatly enhanced SOC accumulation by promoting macro-aggregation, which in turn preserved plant-derived carbon through the direct input of the persistent char in a rice paddy.
0
Paper
Citation1
0
Save