HW
Henk Wymeersch
Author with expertise in Wireless Indoor Localization Techniques and Systems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(82% Open Access)
Cited by:
6,098
h-index:
65
/
i10-index:
279
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cooperative Localization in Wireless Networks

Henk Wymeersch et al.Feb 1, 2009
Location-aware technologies will revolutionize many aspects of commercial, public service, and military sectors, and are expected to spawn numerous unforeseen applications. A new era of highly accurate ubiquitous location-awareness is on the horizon, enabled by a paradigm of cooperation between nodes. In this paper, we give an overview of cooperative localization approaches and apply them to ultrawide bandwidth (UWB) wireless networks. UWB transmission technology is particularly attractive for short- to medium-range localization, especially in GPS-denied environments: wide transmission bandwidths enable robust communication in dense multipath scenarios, and the ability to resolve subnanosecond delays results in centimeter-level distance resolution. We will describe several cooperative localization algorithms and quantify their performance, based on realistic UWB ranging models developed through an extensive measurement campaign using FCC-compliant UWB radios. We will also present a powerful localization algorithm by mapping a graphical model for statistical inference onto the network topology, which results in a net-factor graph, and by developing a suitable net-message passing schedule. The resulting algorithm (SPAWN) is fully distributed, can cope with a wide variety of scenarios, and requires little communication overhead to achieve accurate and robust localization.
0

Fundamental Limits of Wideband Localization— Part II: Cooperative Networks

Yuan Shen et al.Sep 15, 2010
The availability of positional information is of great importance in many commercial, governmental, and military applications. Localization is commonly accomplished through the use of radio communication between mobile devices (agents) and fixed infrastructure (anchors). However, precise determination of agent positions is a challenging task, especially in harsh environments due to radio blockage or limited anchor deployment. In these situations, cooperation among agents can significantly improve localization accuracy and reduce localization outage probabilities. A general framework of analyzing the fundamental limits of wideband localization has been developed in Part I of the paper. Here, we build on this framework and establish the fundamental limits of wideband cooperative location-aware networks. Our analysis is based on the waveforms received at the nodes, in conjunction with Fisher information inequality. We provide a geometrical interpretation of equivalent Fisher information for cooperative networks. This approach allows us to succinctly derive fundamental performance limits and their scaling behaviors, and to treat anchors and agents in a unified way from the perspective of localization accuracy. Our results yield important insights into how and when cooperation is beneficial.
0

Massive MIMO is a reality—What is next?

Emil Björnson et al.Jun 20, 2019
Massive MIMO (multiple-input multiple-output) is no longer a “wild” or “promising” concept for future cellular networks—in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies—once viewed prohibitively complicated and costly—is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.
0

NLOS identification and mitigation for localization based on UWB experimental data

Stefano Maranò et al.Aug 24, 2010
Sensor networks can benefit greatly from location-awareness, since it allows information gathered by the sensors to be tied to their physical locations. Ultra-wide bandwidth (UWB) transmission is a promising technology for location-aware sensor networks, due to its power efficiency, fine delay resolution, and robust operation in harsh environments. However, the presence of walls and other obstacles presents a significant challenge in terms of localization, as they can result in positively biased distance estimates. We have performed an extensive indoor measurement campaign with FCC-compliant UWB radios to quantify the effect of non-line-of-sight (NLOS) propagation. From these channel pulse responses, we extract features that are representative of the propagation conditions. We then develop classification and regression algorithms based on machine learning techniques, which are capable of: (i) assessing whether a signal was transmitted in LOS or NLOS conditions; and (ii) reducing ranging error caused by NLOS conditions. We evaluate the resulting performance through Monte Carlo simulations and compare with existing techniques. In contrast to common probabilistic approaches that require statistical models of the features, the proposed optimization-based approach is more robust against modeling errors.
0

Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

Carlos Lima et al.Jan 1, 2021
Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust.
0

Reconfigurable Intelligent Surfaces: A signal processing perspective with wireless applications

Emil Björnson et al.Feb 24, 2022
Antenna array technology enables the directional transmission and reception of wireless signals for communication, localization, and sensing purposes. The signal processing algorithms that underpin it began to be developed several decades ago [1] , but it was with the deployment of 5G wireless mobile networks that the technology became mainstream [2] . The number of antenna elements in the arrays of 5G base stations (BSs) and user devices can be measured on the order of hundreds and tens, respectively. As networks shift toward using higher-frequency bands, more antennas fit into a given aperture. For communication purposes, the arrays are harnessed to form beams in desired directions to improve the signal-to-noise ratio (SNR) and multiplex data signals in the spatial domain (to one or multiple devices) and to suppress interference by spatial filtering [2] . For localization purposes, these arrays are employed to maintain the SNR when operating across wider bandwidths, for angle-of-arrival estimation, and to separate multiple sources and scatterers [3] . The practical use of these features requires that each antenna array is equipped with well-designed signal processing algorithms.
0
Paper
Citation315
0
Save
0

A Machine Learning Approach to Ranging Error Mitigation for UWB Localization

Henk Wymeersch et al.Jun 1, 2012
Location-awareness is becoming increasingly important in wireless networks. Indoor localization can be enabled through wideband or ultra-wide bandwidth (UWB) transmission, due to its fine delay resolution and obstacle-penetration capabilities. A major hurdle is the presence of obstacles that block the line-of-sight (LOS) path between devices, affecting ranging performance and, in turn, localization accuracy. Many techniques have been proposed to address this issue, most of which make modifications to the localization algorithm. Since many localization algorithms work with distance or angle estimates, rather than received waveforms, information inherent in the wideband waveform is lost, leading to sub-optimal ranging error mitigation. To avoid this information loss, we present a novel approach to mitigate ranging errors directly in the physical layer. In contrast to existing techniques, which detect the non-line-of-sight (NLOS) condition, our approach directly mitigates the bias incurred in both LOS and non-LOS conditions. In particular, we apply two classes of non-parametric regressors to form an estimate of the ranging error. Our work is based on, and validated by, an extensive indoor measurement campaign with FCC-compliant UWB radios. The results show that the proposed regressors provide significant performance improvements in various practical localization scenarios, compared to conventional approaches.
Load More