JL
Jon Lloyd
Author with expertise in Global Forest Drought Response and Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(70% Open Access)
Cited by:
21,512
h-index:
90
/
i10-index:
224
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TRY – a global database of plant traits

Jens Kattge et al.Apr 26, 2011
Abstract Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy‐in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log‐normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait‐based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.
0
Paper
Citation2,346
0
Save
0

Long-term decline of the Amazon carbon sink

Roel Brienen et al.Mar 1, 2015
Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.
0
Paper
Citation979
0
Save
0

Variation in wood density determines spatial patterns inAmazonian forest biomass

Timothy Baker et al.Apr 21, 2004
Abstract Uncertainty in biomass estimates is one of the greatest limitations to models of carbon flux in tropical forests. Previous comparisons of field‐based estimates of the aboveground biomass (AGB) of trees greater than 10 cm diameter within Amazonia have been limited by the paucity of data for western Amazon forests, and the use of site‐specific methods to estimate biomass from inventory data. In addition, the role of regional variation in stand‐level wood specific gravity has not previously been considered. Using data from 56 mature forest plots across Amazonia, we consider the relative roles of species composition (wood specific gravity) and forest structure (basal area) in determining variation in AGB. Mean stand‐level wood specific gravity, on a per stem basis, is 15.8% higher in forests in central and eastern, compared with northwestern Amazonia. This pattern is due to the higher diversity and abundance of taxa with high specific gravity values in central and eastern Amazonia, and the greater diversity and abundance of taxa with low specific gravity values in western Amazonia. For two estimates of AGB derived using different allometric equations, basal area explains 51.7% and 63.4%, and stand‐level specific gravity 45.4% and 29.7%, of the total variation in AGB. The variation in specific gravity is important because it determines the regional scale, spatial pattern of AGB. When weighting by specific gravity is included, central and eastern Amazon forests have significantly higher AGB than stands in northwest or southwest Amazonia. The regional‐scale pattern of species composition therefore defines a broad gradient of AGB across Amazonia.
0
Paper
Citation762
0
Save
0

RELATIONSHIPS AMONG MAXIMUM STOMATAL CONDUCTANCE, ECOSYSTEM SURFACE CONDUCTANCE, CARBON ASSIMILATION RATE, AND PLANT NITROGEN NUTRITION: A Global Ecology Scaling Exercise

Ernst‐Detlef Schulze et al.Nov 1, 1994
This review provides a theoretical framework and global maps for relations between nitrogen-(N)-nutrition and stomatal conductance, gs' at the leaf scale and flUXe!1 of water vapor and carbon dioxide at the canopy scale. This theory defines the boundaries for observed rates of maximum surface conductance, Gsmax, and its relation to leaf area index, A, within a range of observed max­ imum stomatal conductances. gsmax. Soil evaporation compensates for the reduced contribution of plants to total ecosystem water loss at A < 4. Thus, Gsmax is fairly independent of changes in A for a broad range of vegetation types. The variation of Gsmax within these boundaries can be explained by effects of plant nutrition on stomatal conductance via effects on assimilation. Relations are established for the main global vegetation types among (i) maximum stomatal conductance and leaf nitrogen concentrations with a slope of 0.3 mm s-I per mg N g-I, (ii) maximum surface conductance and stomatal conductance with a slope of 3 mm s-I in G per mm S-I in g, and (iii) maximum surface CO2 uptake and surface conductance with a slope of 1 /lmol m-2 s-1 in A per mm S-1 in G. Based on the distribution of leaf nitrogen in different vegetation types, predictions are made for maximum surface conductance and assimilation of carbon dioxide at a global scale. The review provides a basis for modeling and predicting feedforward and feedback effects between terres­ trial vegetation and global climate.
0
Paper
Citation647
0
Save
0

Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

Carlos Quesada et al.Jun 22, 2012
Abstract. Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the interacting effects of soil physical and chemical properties with climate. A hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining endogenous disturbance levels, species composition, and forest productivity across the Amazon Basin.
0
Paper
Citation578
0
Save
Load More