NL
Nian Liu
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
40
(33% Open Access)
Cited by:
24,703
h-index:
69
/
i10-index:
154
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The path towards sustainable energy

Steven Chu et al.Dec 20, 2016
N
Y
S
Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
0
Paper
Citation3,686
0
Save
0

A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes

Nian Liu et al.Feb 14, 2014
+4
J
Z
N
0

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes

Nian Liu et al.May 2, 2012
+3
M
H
N
Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (∼2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.
0

Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life

Yan Yao et al.Jun 14, 2011
+5
I
M
Y
Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g–1 with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.
0
Paper
Citation1,353
0
Save
0

Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles

Hui Wu et al.Jun 4, 2013
+4
L
G
H
Silicon has a high-specific capacity as an anode material for Li-ion batteries, and much research has been focused on overcoming the poor cycling stability issue associated with its large volume changes during charging and discharging processes, mostly through nanostructured material design. Here we report incorporation of a conducting polymer hydrogel into Si-based anodes: the hydrogel is polymerized in-situ, resulting in a well-connected three-dimensional network structure consisting of Si nanoparticles conformally coated by the conducting polymer. Such a hierarchical hydrogel framework combines multiple advantageous features, including a continuous electrically conductive polyaniline network, binding with the Si surface through either the crosslinker hydrogen bonding with phytic acid or electrostatic interaction with the positively charged polymer, and porous space for volume expansion of Si particles. With this anode, we demonstrate a cycle life of 5,000 cycles with over 90% capacity retention at current density of 6.0 A g−1. Nanostructured silicon is a promising anode material for lithium ion batteries but needs to tolerate large volume increase upon lithiation. Wu et al. solve this problem by binding silicon nanoparticles to a conducting polymer hydrogel via in-situpolymerization, which also improves cycling stability.
0

Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

Lijia Pan et al.May 29, 2012
+8
D
G
L
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g -1 ), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM -1 ). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
0

Enhancing the Supercapacitor Performance of Graphene/MnO2 Nanostructured Electrodes by Conductive Wrapping

Guihua Yu et al.Sep 26, 2011
+5
N
L
G
MnO2 is considered one of the most promising pseudocapactive materials for high-performance supercapacitors given its high theoretical specific capacitance, low-cost, environmental benignity, and natural abundance. However, MnO2 electrodes often suffer from poor electronic and ionic conductivities, resulting in their limited performance in power density and cycling. Here we developed a "conductive wrapping" method to greatly improve the supercapacitor performance of graphene/MnO2-based nanostructured electrodes. By three-dimensional (3D) conductive wrapping of graphene/MnO2 nanostructures with carbon nanotubes or conducting polymer, specific capacitance of the electrodes (considering total mass of active materials) has substantially increased by ∼20% and ∼45%, respectively, with values as high as ∼380 F/g achieved. Moreover, these ternary composite electrodes have also exhibited excellent cycling performance with >95% capacitance retention over 3000 cycles. This 3D conductive wrapping approach represents an exciting direction for enhancing the device performance of metal oxide-based electrochemical supercapacitors and can be generalized for designing next-generation high-performance energy storage devices.
0

Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers

Wei Liu et al.Mar 17, 2015
+4
J
N
W
Solid-state electrolytes provide substantial improvements to safety and electrochemical stability in lithium-ion batteries when compared with conventional liquid electrolytes, which makes them a promising alternative technology for next-generation high-energy batteries. Currently, the low mobility of lithium ions in solid electrolytes limits their practical application. The ongoing research over the past few decades on dispersing of ceramic nanoparticles into polymer matrix has been proved effective to enhance ionic conductivity although it is challenging to form the efficiency networks of ionic conduction with nanoparticles. In this work, we first report that ceramic nanowire fillers can facilitate formation of such ionic conduction networks in polymer-based solid electrolyte to enhance its ionic conductivity by three orders of magnitude. Polyacrylonitrile-LiClO4 incorporated with 15 wt % Li0.33La0.557TiO3 nanowire composite electrolyte exhibits an unprecedented ionic conductivity of 2.4 × 10–4 S cm–1 at room temperature, which is attributed to the fast ion transport on the surfaces of ceramic nanowires acting as conductive network in the polymer matrix. In addition, the ceramic-nanowire filled composite polymer electrolyte shows an enlarged electrochemical stability window in comparison to the one without fillers. The discovery in the present work paves the way for the design of solid ion electrolytes with superior performance.
0

Formation of Stable Phosphorus–Carbon Bond for Enhanced Performance in Black Phosphorus Nanoparticle–Graphite Composite Battery Anodes

Jie Sun et al.Jul 14, 2014
+5
H
G
J
High specific capacity battery electrode materials have attracted great research attention. Phosphorus as a low-cost abundant material has a high theoretical specific capacity of 2596 mAh/g with most of its capacity at the discharge potential range of 0.4–1.2 V, suitable as anodes. Although numerous research progress have shown other high capacity anodes such as Si, Ge, Sn, and SnO2, there are only a few studies on phosphorus anodes despite its high theoretical capacity. Successful applications of phosphorus anodes have been impeded by rapid capacity fading, mainly caused by large volume change (around 300%) upon lithiation and thus loss of electrical contact. Using the conducting allotrope of phosphorus, "black phosphorus" as starting materials, here we fabricated composites of black phosphorus nanoparticle-graphite by mechanochemical reaction in a high energy mechanical milling process. This process produces phosphorus–carbon bonds, which are stable during lithium insertion/extraction, maintaining excellent electrical connection between phosphorus and carbon. We demonstrated high initial discharge capacity of 2786 mAh·g–1 at 0.2 C and an excellent cycle life of 100 cycles with 80% capacity retention. High specific discharge capacities are maintained at fast C rates (2270, 1750, 1500, and 1240 mAh·g–1 at C/5, 1, 2, and 4.5 C, respectively).
Load More