SW
Songcan Wang
Author with expertise in Photocatalytic Materials for Solar Energy Conversion
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
15
(27% Open Access)
Cited by:
4,003
h-index:
45
/
i10-index:
73
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells

Peng Chen et al.Feb 13, 2018
Abstract 2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA 2 PbI 4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage ( V oc ) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.
0

New BiVO4 Dual Photoanodes with Enriched Oxygen Vacancies for Efficient Solar‐Driven Water Splitting

Songcan Wang et al.Mar 30, 2018
Abstract Bismuth vanadate (BiVO 4 ) is a promising photoanode material for photoelectrochemical (PEC) water splitting. However, owing to the short carrier diffusion length, the trade‐off between sufficient light absorption and efficient charge separation often leads to poor PEC performance. Herein, a new electrodeposition process is developed to prepare bismuth oxide precursor films, which can be converted to transparent BiVO 4 films with well‐controlled oxygen vacancies via a mild thermal treatment process. The optimized BiVO 4 film exhibits an excellent back illumination charge separation efficiency mainly due to the presence of enriched oxygen vacancies which act as shallow donors. By loading FeOOH/NiOOH as the cocatalysts, the BiVO 4 dual photoanodes exhibit a remarkable and highly stable photocurrent density of 5.87 mA cm − 2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination. An artificial leaf composed of the BiVO 4 /FeOOH/NiOOH dual photoanodes and a single sealed perovskite solar cell delivers a solar‐to‐hydrogen conversion efficiency as high as 6.5% for unbiased water splitting.
0

New Iron‐Cobalt Oxide Catalysts Promoting BiVO4 Films for Photoelectrochemical Water Splitting

Songcan Wang et al.Jun 26, 2018
Abstract Owing to the sluggish kinetics for water oxidation, severe surface charge recombination is a major energy loss that hinders efficient photoelectrochemical (PEC) water splitting. Herein, a simple process is developed for preparing a new type of low‐cost iron‐cobalt oxide (FeCoO x ) as an efficient co‐catalyst to suppress the surface charge recombination on bismuth vanadate (BiVO 4 ) photoanodes. The new FeCoO x /BiVO 4 photoanode exhibits a high photocurrent density of 4.82 mA cm −2 at 1.23 V versus the reversible hydrogen electrode under AM 1.5 G illumination, which corresponds to >100% increase compared to that of the pristine BiVO 4 photoanode. The photoanode also demonstrates a high charge separation efficiency of ≈90% with excellent stability of over 10 h, indicating the excellent catalytic performance of FeCoO x in the PEC process. Density functional theory calculations and experimental studies reveal that the incorporation of Fe into CoO x generates abundant oxygen vacancies and forms a p‐n heterojunction with BiVO 4 , which effectively promotes the hole transport/trapping from the BiVO 4 photocatalyst and reduces the overpotential for oxygen evolution reaction (OER), resulting in remarkably increased photocurrent densities and durability. This work demonstrates a feasible process for depositing cheap FeCoO x as an excellent OER cocatalyst on photoanodes for PEC water splitting.
Load More