GB
Garry Buettner
Author with expertise in Role of Vitamin C in Health and Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
15
(60% Open Access)
Cited by:
6,457
h-index:
84
/
i10-index:
234
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues

Qi Chen et al.Sep 12, 2005
Human pharmacokinetics data indicate that i.v. ascorbic acid (ascorbate) in pharmacologic concentrations could have an unanticipated role in cancer treatment. Our goals here were to test whether ascorbate killed cancer cells selectively, and if so, to determine mechanisms, using clinically relevant conditions. Cell death in 10 cancer and 4 normal cell types was measured by using 1-h exposures. Normal cells were unaffected by 20 mM ascorbate, whereas 5 cancer lines had EC(50) values of <4 mM, a concentration easily achievable i.v. Human lymphoma cells were studied in detail because of their sensitivity to ascorbate (EC(50) of 0.5 mM) and suitability for addressing mechanisms. Extracellular but not intracellular ascorbate mediated cell death, which occurred by apoptosis and pyknosis/necrosis. Cell death was independent of metal chelators and absolutely dependent on H(2)O(2) formation. Cell death from H(2)O(2) added to cells was identical to that found when H(2)O(2) was generated by ascorbate treatment. H(2)O(2) generation was dependent on ascorbate concentration, incubation time, and the presence of 0.5-10% serum, and displayed a linear relationship with ascorbate radical formation. Although ascorbate addition to medium generated H(2)O(2), ascorbate addition to blood generated no detectable H(2)O(2) and only trace detectable ascorbate radical. Taken together, these data indicate that ascorbate at concentrations achieved only by i.v. administration may be a pro-drug for formation of H(2)O(2), and that blood can be a delivery system of the pro-drug to tissues. These findings give plausibility to i.v. ascorbic acid in cancer treatment, and have unexpected implications for treatment of infections where H(2)O(2) may be beneficial.
0

Catalytic Metals, Ascorbate and Free Radicals: Combinations to Avoid

Garry Buettner et al.May 1, 1996
Trace levels of transition metals can participate in the metal-catalyzed Haber-Weiss reaction (superoxide-driven Fenton reaction) as well as catalyze the oxidation of ascorbate. Generally ascorbate is thought of as an excellent reducing agent; it is able to serve as a donor antioxidant in free radical-mediated oxidation processes. However, as a reducing agent it is also able to reduce redox-active metals such as copper and iron, thereby increasing the pro-oxidant chemistry of these metals. Thus ascorbate can serve as both a pro-oxidant and an antioxidant. In general, at low ascorbate concentrations, ascorbate is prone to be a pro-oxidant, and at high concentrations, it will tend to be an antioxidant. Hence there is a crossover effect. We propose that the "position" of this crossover effect is a function of the catalytic metal concentration. In this presentation, we discuss: (1) the role of catalytic metals in free radical-mediated oxidations; (2) ascorbate as both a pro-oxidant and an antioxidant; (3) catalytic metal catalysis of ascorbate oxidation; (4) use of ascorbate to determine adventitious catalytic metal concentrations; (5) use of ascorbate radical as a marker of oxidative stress; and (6) use of ascorbate and iron as free radical pro-oxidants in photodynamic therapy of cancer.
0

Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123

S. Hempel et al.Jul 1, 1999
To detect intracellular oxidant formation during reoxygenation of anoxic endothelium, the oxidant-sensing fluorescent probes, 2′,7′-dichlorodihydrofluorescein diacetate, dihydrorhodamine 123, or 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate were added to human umbilical vein endothelial cells during reoxygenation. None of these fluorescent probes were able to differentiate the controls from the reoxygenated cells in the confocal microscope. However, dihydrofluorescein diacetate demonstrated fluorescence of linear structures, consistent with mitochondria, in reoxygenated endothelium. This work tests the hypothesis that dihydrofluorescein diacetate is a better fluorescent probe for detecting intracellular oxidants because it is more reactive toward specific oxidizing species. To investigate this, dihydrofluorescein diacetate was exposed to various oxidizing species (hydrogen peroxide, superoxide [KO2], peroxynitrite, nitric oxide, horseradish peroxidase, ferric iron, xanthine oxidase, cytochrome c, and lipoxygenase) and compared with the three other popular probes. Though oxidized dihydrofluorescein has higher molar fluorescence, comparison of the reactions of dihydrofluorescein with these other three probes in a cell-free system indicates that dihydrofluorescein is sometimes less fluorescent than the other probes. In addition, we find that the reactivity of all of the probes is very complex. Based on the results reported here, it is no longer appropriate to think of these probes as detecting a specific oxidizing species in cells, such as H2O2, but rather as detectors of a broad range of oxidizing reactions that may be increased during intracellular oxidant stress. Cell-loading studies indicate that dihydrofluorescein achieves higher intracellular concentrations than the second brightest intracellular probe, 2′,7′-dichlorodihydrofluorescein. This fact and its higher molar fluorescence may account for the superior brightness of dihydrofluorescein diacetate. Dihydrofluorescein diacetate may be a superior fluorescent probe for many cell-based studies.
0

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo

Qi Chen et al.May 15, 2007
Ascorbate (ascorbic acid, vitamin C), in pharmacologic concentrations easily achieved in humans by i.v. administration, selectively kills some cancer cells but not normal cells. We proposed that pharmacologic ascorbate is a prodrug for preferential steady-state formation of ascorbate radical (Asc •− ) and H 2 O 2 in the extracellular space compared with blood. Here we test this hypothesis in vivo . Rats were administered parenteral (i.v. or i.p.) or oral ascorbate in typical human pharmacologic doses (≈0.25–0.5 mg per gram of body weight). After i.v. injection, ascorbate baseline concentrations of 50–100 μM in blood and extracellular fluid increased to peaks of >8 mM. After i.p. injection, peaks approached 3 mM in both fluids. By gavage, the same doses produced ascorbate concentrations of <150 μM in both fluids. In blood, Asc •− concentrations measured by EPR were undetectable with oral administration and always <50 nM with parenteral administration, even when corresponding ascorbate concentrations were >8 mM. After parenteral dosing, Asc •− concentrations in extracellular fluid were 4- to 12-fold higher than those in blood, were as high as 250 nM, and were a function of ascorbate concentrations. By using the synthesized probe peroxyxanthone, H 2 O 2 in extracellular fluid was detected only after parenteral administration of ascorbate and when Asc •− concentrations in extracellular fluid exceeded 100 nM. The data show that pharmacologic ascorbate is a prodrug for preferential steady-state formation of Asc •− and H 2 O 2 in the extracellular space but not blood. These data provide a foundation for pursuing pharmacologic ascorbate as a prooxidant therapeutic agent in cancer and infections.
0

Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia

David Hall et al.Feb 1, 2001
This work tested the hypotheses that splanchnic oxidant generation is important in determining heat tolerance and that inappropriate ·NO production may be involved in circulatory dysfunction with heat stroke. We monitored colonic temperature (T c ), heart rate, mean arterial pressure, and splanchnic blood flow (SBF) in anesthetized rats exposed to 40°C ambient temperature. Heating rate, heating time, and thermal load determined heat tolerance. Portal blood was regularly collected for determination of radical and endotoxin content. Elevating T c from 37 to 41.5°C reduced SBF by 40% and stimulated production of the radicals ceruloplasmin, semiquinone, and penta-coordinate iron(II) nitrosyl-heme (heme-·NO). Portal endotoxin concentration rose from 28 to 59 pg/ml ( P < 0.05). Compared with heat stress alone, heat plus treatment with the nitric oxide synthase (NOS) antagonist N ω -nitro-l-arginine methyl ester (l-NAME) dose dependently depressed heme-·NO production and increased ceruloplasmin and semiquinone levels. l-NAME also significantly reduced lowered SBF, increased portal endotoxin concentration, and reduced heat tolerance ( P < 0.05). The NOS II and diamine oxidase antagonist aminoguanidine, the superoxide anion scavenger superoxide dismutase, and the xanthine oxidase antagonist allopurinol slowed the rates of heme-·NO production, decreased ceruloplasmin and semiquinone levels, and preserved SBF. However, only aminoguanidine and allopurinol improved heat tolerance, and only allpourinol eliminated the rise in portal endotoxin content. We conclude that hyperthermia stimulates xanthine oxidase production of reactive oxygen species that activate metals and limit heat tolerance by promoting circulatory and intestinal barrier dysfunction. In addition, intact NOS activity is required for normal stress tolerance, whereas overproduction of ·NO may contribute to the nonprogrammed splanchnic dilation that precedes vascular collapse with heat stroke.
0
Citation423
0
Save
0

The rate of oxygen utilization by cells

Brett Wagner et al.May 27, 2011
The discovery of oxygen is considered by some to be the most important scientific discovery of all time—from both physical–chemical/astrophysics and biology/evolution viewpoints. One of the major developments during evolution is the ability to capture dioxygen in the environment and deliver it to each cell in the multicellular, complex mammalian body—on demand, i.e., just in time. Humans use oxygen to extract approximately 2550 calories (10.4 MJ) from food to meet daily energy requirements. This combustion requires about 22 mol of dioxygen per day, or 2.5 × 10− 4 mol s− 1. This is an average rate of oxygen utilization of 2.5 × 10− 18 mol cell− 1 s− 1, i.e., 2.5 amol cell− 1 s− 1. Cells have a wide range of oxygen utilization, depending on cell type, function, and biological status. Measured rates of oxygen utilization by mammalian cells in culture range from < 1 to > 350 amol cell− 1 s− 1. There is a loose positive linear correlation of the rate of oxygen consumption by mammalian cells in culture with cell volume and cell protein. The use of oxygen by cells and tissues is an essential aspect of the basic redox biology of cells and tissues. This type of quantitative information is fundamental to investigations in quantitative redox biology, especially redox systems biology.
0

Mechanisms of Ascorbate-Induced Cytotoxicity in Pancreatic Cancer

Juan Du et al.Jan 13, 2010
Pharmacologic concentrations of ascorbate may be effective in cancer therapeutics. We hypothesized that ascorbate concentrations achievable with i.v. dosing would be cytotoxic in pancreatic cancer for which the 5-year survival is <3%.Pancreatic cancer cell lines were treated with ascorbate (0, 5, or 10 mmol/L) for 1 hour, then viability and clonogenic survival were determined. Pancreatic tumor cells were delivered s.c. into the flank region of nude mice and allowed to grow at which time they were randomized to receive either ascorbate (4 g/kg) or osmotically equivalent saline (1 mol/L) i.p. for 2 weeks.There was a time- and dose-dependent increase in measured H(2)O(2) production with increased concentrations of ascorbate. Ascorbate decreased viability in all pancreatic cancer cell lines but had no effect on an immortalized pancreatic ductal epithelial cell line. Ascorbate decreased clonogenic survival of the pancreatic cancer cell lines, which was reversed by treatment of cells with scavengers of H(2)O(2). Treatment with ascorbate induced a caspase-independent cell death that was associated with autophagy. In vivo, treatment with ascorbate inhibited tumor growth and prolonged survival.These results show that pharmacologic doses of ascorbate, easily achievable in humans, may have potential for therapy in pancreatic cancer.
0
Citation295
0
Save
Load More