The strength−ductility trade-off exists ubiquitously, especially in brittle intermetallic-containing multiple principal element alloys (MPEAs), where the intermetallic phases often induce premature failure leading to severe ductility reduction. Hierarchical heterogeneities represent a promising microstructural solution to achieve simultaneous strength−ductility enhancement. However, it remains fundamentally challenging to tailor hierarchical heterostructures using conventional methods, which often rely on costly and time-consuming processing. Here, we report a multiscale microstructural inheritance and refinement strategy to process “structural hierarchy precursors” in as-cast heterogeneous Al 0.7 CoCrFeNi MPEAs, which lead directly to a hierarchical hetero-lamellar structure (HLS) after simple rolling and annealing. Interestingly, it takes only 10 min of annealing time, two orders of magnitude less than that required to render the state-of-the-art properties during conventional processing of Al 0.7 CoCrFeNi, for us to achieve record-high strength−ductility combinations via the hierarchical HLS design that sequentially stimulates multiple unusual deformation and reinforcement mechanisms. In particular, the HLS-enabled high hetero-deformation-induced (HDI) internal stress triggers profuse <111>-type dislocations on over five independent slip systems in the supposedly brittle intermetallic phase and activates extensive stacking faults (SFs) and nanotwinning in the adjoining soft phase with a rather high SF energy. These unexpected, dynamically reinforcing hetero-deformation mechanisms across multiple length scales facilitate high sustained HDI strain hardening, along with a salient microcrack-mediated extrinsic ductilization effect, suggesting that the proposed microstructural inheritance and refinement strategy provides an efficient, fast, and low-cost approach to overcome the strength−ductility trade-off in a broad range of structural materials.