XX
Xinyi Xu
Author with expertise in Autism Spectrum Disorders
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(17% Open Access)
Cited by:
3,535
h-index:
18
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of common genetic risk variants for autism spectrum disorder

Jakob Grove et al.Feb 25, 2019
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample-size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 individuals with ASD and 27,969 controls that identified five genome-wide-significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), we identified seven additional loci shared with other traits at equally strict significance levels. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across ASD subtypes. These results highlight biological insights, particularly relating to neuronal function and corticogenesis, and establish that GWAS performed at scale will be much more productive in the near term in ASD. A genome-wide-association meta-analysis of 18,381 austim spectrum disorder (ASD) cases and 27,969 controls identifies five risk loci. The authors find quantitative and qualitative polygenic heterogeneity across ASD subtypes.
0
Citation1,858
0
Save
0

Common risk variants identified in autism spectrum disorder

Jakob Grove et al.Nov 25, 2017
Autism spectrum disorder (ASD) is a highly heritable and heterogeneous group of neurodevelopmental phenotypes diagnosed in more than 1% of children. Common genetic variants contribute substantially to ASD susceptibility, but to date no individual variants have been robustly associated with ASD. With a marked sample size increase from a unique Danish population resource, we report a genome-wide association meta-analysis of 18,381 ASD cases and 27,969 controls that identifies five genome-wide significant loci. Leveraging GWAS results from three phenotypes with significantly overlapping genetic architectures (schizophrenia, major depression, and educational attainment), seven additional loci shared with other traits are identified at equally strict significance levels. Dissecting the polygenic architecture we find both quantitative and qualitative polygenic heterogeneity across ASD subtypes, in contrast to what is typically seen in other complex disorders. These results highlight biological insights, particularly relating to neuronal function and corticogenesis and establish that GWAS performed at scale will be much more productive in the near term in ASD, just as it has been in a broad range of important psychiatric and diverse medical phenotypes.
0

Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders

Hoang Nguyen et al.May 8, 2017
Background. Integrating rare variation from trio family and case/control studies has successfully implicated specific genes contributing to risk of neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), intellectual disability (ID), developmental disorders (DD), and epilepsy (EPI). For schizophrenia (SCZ), however, while sets of genes have been implicated through study of rare variation, only two risk genes have been identified. Methods. We used hierarchical Bayesian modeling of rare variant genetic architecture to estimate mean effect sizes and risk-gene proportions, analyzing the largest available collection of whole exome sequence (WES) data for schizophrenia (1,077 trios, 6,699 cases and 13,028 controls), and data for four NDDs (ASD, ID, DD, and EPI; total 10,792 trios, and 4,058 cases and controls). Results. For SCZ, we estimate 1,551 risk genes, more risk genes and weaker effects than for NDDs. We provide power analyses to predict the number of risk gene discoveries as more data become available, demonstrating greater value of case-control over trio samples. We confirm and augment prior risk gene and gene set enrichment results for SCZ and NDDs. In particular, we detected 98 new DD risk genes at FDR < 0.05. Correlations of risk-gene posterior probabilities are high across four NDDs (ρ > 0.55), but low between SCZ and the NDDs (ρ < 0.3). In depth analysis of 288 NDD genes shows highly significant protein-protein interaction (PPI) network connectivity, and functionally distinct PPI subnetworks based on pathway enrichments, single-cell RNA-seq (scRNAseq) cell types and multi-region developmental brain RNA-seq. Conclusions. We have extended a pipeline used in ASD studies and applied it to infer rare genetic parameters for SCZ and four NDDs. We find many new DD risk genes, supported by gene set enrichment and PPI network connectivity analyses. We find greater similarity among NDDs than between NDDs and SCZ. NDD gene subnetworks are implicated in postnatally expressed presynaptic and postsynaptic genes, and for transcriptional and post-transcriptional gene regulation in prenatal neural progenitor and stem cells.
0

Integrative analysis of rare variants and pathway information shows convergent results between immune pathways, drug targets and epilepsy genes

Hoang Nguyen et al.Sep 9, 2018
Trio family and case-control studies of next-generation sequencing data have proven integral to understanding the contribution of rare inherited and de novo single-nucleotide variants to the genetic architecture of complex disease. Ideally, such studies should identify individual risk genes of moderate to large effect size to generate novel treatment hypotheses for further follow-up. However, due to insufficient power, gene set enrichment analyses have come to be relied upon for detecting differences between cases and controls, implicating sets of hundreds of genes rather than specific targets for further investigation. Here, we present a Bayesian statistical framework, termed gTADA, that integrates gene-set membership information with gene-level de novo and rare inherited case-control counts, to prioritize risk genes with excess rare variant burden within enriched gene sets. Applying gTADA to available whole-exome sequencing datasets for several neuropsychiatric conditions, we replicated previously reported gene set enrichments and identified novel risk genes. For epilepsy, gTADA prioritized 40 risk genes (posterior probabilities > 0.95), 6 of which replicate in an independent whole-genome sequencing study. In addition, 30/40 genes are novel genes. We found that epilepsy genes had high protein-protein interaction (PPI) network connectivity, and show specific expression during human brain development. Some of the top prioritized EPI genes were connected to a PPI subnetwork of immune genes and show specific expression in prenatal microglia. We also identified multiple enriched drug-target gene sets for EPI which included immunostimulants as well as known antiepileptics. Immune biology was supported specifically by case-control variants from familial epilepsies rather than do novo mutations in generalized encephalitic epilepsy.
Load More