MR
Mahmoud Ragab
Author with expertise in Web Data Extraction and Crawling Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
0
h-index:
16
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Enhanced cervical precancerous lesions detection and classification using Archimedes Optimization Algorithm with transfer learning

Ayed Allogmani et al.May 27, 2024
Abstract Cervical cancer (CC) ranks as the fourth most common form of cancer affecting women, manifesting in the cervix. CC is caused by the Human papillomavirus (HPV) infection and is eradicated by vaccinating women from an early age. However, limited medical facilities present a significant challenge in mid- or low-income countries. It can improve the survivability rate and be successfully treated if the CC is detected at earlier stages. Current technological improvements allow for cost-effective, more sensitive, and rapid screening and treatment measures for CC. DL techniques are widely adopted for the automated detection of CC. DL techniques and architectures are used to detect CC and provide higher detection performance. This study offers the design of Enhanced Cervical Precancerous Lesions Detection and Classification using the Archimedes Optimization Algorithm with Transfer Learning (CPLDC-AOATL) algorithm. The CPLDC-AOATL algorithm aims to diagnose cervical cancer using medical images. At the preliminary stage, the CPLDC-AOATL technique involves a bilateral filtering (BF) technique to eliminate the noise in the input images. Besides, the CPLDC-AOATL technique applies the Inception-ResNetv2 model for the feature extraction process, and the use of AOA chose the hyperparameters. The CPLDC-AOATL technique involves a bidirectional long short-term memory (BiLSTM) model for the cancer detection process. The experimental outcome of the CPLDC-AOATL technique emphasized the superior accuracy outcome of 99.53% over other existing approaches under a benchmark dataset.
0

Automated brain tumor recognition using equilibrium optimizer with deep learning approach on MRI images

Mahmoud Ragab et al.Nov 27, 2024
Brain tumours (BT) affect human health owing to their location. Artificial intelligence (AI) is intended to assist in diagnosing and treating complex diseases by combining technologies like deep learning (DL), big data analytics, and machine learning (ML). AI can identify and categorize tumours by analyzing brain imaging approaches like Magnetic Resonance Imaging (MRI). The medical sector has been promptly shifted by evolving technology, and an essential element of these transformations is AI technology. AI model determines tumours' class, size, aggressiveness, and location. This assists medical doctors in making more exact diagnoses and treatment plans and helps patients better understand their health. Also, AI is used to track the progress of patients through treatment. AI-based analytics is used to predict potential tumour recurrence and assess treatment response. This study presents Brain Tumor Recognition using an Equilibrium Optimizer with a Deep Learning Approach (BTR-EODLA) technique for MRI images. The BTR-EODLA technique intends to recognize whether or not a BT presence exists. In the BTR-EODLA technique, median filtering (MF) is deployed to eliminate the noise in the input MRI. Besides, the squeeze-excitation ResNet (SE-ResNet50) model is applied to derive feature vectors, and its parameters are fine-tuned by the design of the EO model. The BTR-EODLA technique utilizes the stacked autoencoder (SAE) model for BT detection. A sequence of experiments is performed to ensure the improved performance of the BTR-EODLA technique. The investigational validation of the BTR-EODLA technique portrayed a superior accuracy value of 98.78% over existing models.
0

Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning based motor imagery classification for brain computer interface

Fatmah Assiri et al.Nov 21, 2024
Motor imagery (MI) classification has been commonly employed in making brain-computer interfaces (BCI) to manage the outside tools as a substitute neural muscular path. Effectual MI classification in BCI improves communication and mobility for people with a breakdown or motor damage, delivering a bridge between the brain’s intentions and exterior actions. Employing electroencephalography (EEG) or aggressive neural recordings, machine learning (ML) methods are used to interpret patterns of brain action linked with motor image tasks. These models frequently depend upon models like support vector machine (SVM) or deep learning (DL) to distinguish among dissimilar MI classes, such as visualizing left or right limb actions. This procedure allows individuals, particularly those with motor disabilities, to utilize their opinions to command exterior devices like robotic limbs or computer borders. This article presents a Boosted Harris Hawks Shuffled Shepherd Optimization Augmented Deep Learning (BHHSHO-DL) technique based on Motor Imagery Classification for BCI. The BHHSHO-DL technique mainly exploits the hyperparameter-tuned DL approach for MI identification for BCI. Initially, the BHHSHO-DL technique performs data preprocessing utilizing the wavelet packet decomposition (WPD) model. Besides, the enhanced densely connected networks (DenseNet) model extracts the preprocessed data’s complex and hierarchical feature patterns. Meanwhile, the BHHSHO technique-based hyperparameter tuning process is accomplished to elect optimal parameter values of the enhanced DenseNet model. Finally, the classification procedure is implemented by utilizing the convolutional autoencoder (CAE) model. The simulation value of the BHHSHO-DL methodology is performed on a benchmark dataset. The performance validation of the BHHSHO-DL methodology portrayed a superior accuracy value of 98.15% and 92.23% over other techniques under BCIC-III and BCIC-IV datasets.