JX
Jianbin Xu
Author with expertise in Graphene: Properties, Synthesis, and Applications
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
49
(41% Open Access)
Cited by:
12,490
h-index:
92
/
i10-index:
408
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency

Keyou Yan et al.Mar 17, 2015
The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.
0

Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics

Xinming Li et al.Jun 1, 2017
The exfoliation and identification of the two-dimensional (2D) single atomic layer of carbon have opened the opportunity to explore graphene and related 2D materials due to their unique properties. 2D materials are regarded as one of the most exciting solutions for next generation electronics and optoelectronics in the technological evolution of semiconductor technology. In this review, we focus on the core concept of “structure-property relationships” to explain the state-of-the-art of 2D materials and summarize the unique electrical and light-matter interaction properties in 2D materials. Based on this, we discuss and analyze the structural properties of 2D materials, such as defects and dopants, the number of layers, composition, phase, strain, and other structural characteristics, which could significantly alter the properties of 2D materials and hence affect the performance of semiconductor devices. In particular, the building blocks principles and potential electronic and optoelectronic applications based on 2D materials are explained and illustrated. Indeed, 2D materials and related heterostructures offer the promise for challenging the existing technologies and providing the chance to have social impact. More efforts are expected to propel this exciting field forward.
0

Ice‐Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement

Rong Sun et al.Oct 19, 2015
Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D‐BNNS) network using ice‐templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m −1 K −1 ), a low thermal expansion coefficient (24–32 ppm K −1 ), and an increased glass transition temperature ( T g ) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.
0

Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction

Lei Ye et al.Mar 4, 2016
Two-dimensional (2D) materials present their excellent properties in electronic and optoelectronic applications, including in ultrafast carrier dynamics, layer-dependent energy bandgap, tunable optical properties, low power dissipation, high mobility, transparency, flexibility, and the ability to confine electromagnetic energy to extremely small volumes. Herein, we demonstrate a photodetector with visible to near-infrared detection range, based on the heterojunction fabricated by van der Waals assembly between few-layer black phosphorus (BP) and few-layer molybdenum disulfide (MoS2). The heterojunction with electrical characteristics which can be electrically tuned by a gate voltage achieves a wide range of current-rectifying behavior with a forward-to-reverse bias current ratio exceeding 103. The photoresponsivity (R) of the photodetector is about 22.3 A W–1 measured at λ = 532 nm and 153.4 mA W–1 at λ = 1.55 μm with a microsecond response speed (15 μs). In addition, its specific detectivity D* is calculated to have the maximum values of 3.1 × 1011 Jones at λ = 532 nm, while 2.13 × 109 Jones at λ = 1550 nm at room temperature.
0

A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity

Rong Sun et al.Apr 12, 2017
With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m-1 K-1) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m-1 K-1) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.
Load More