This article revisits integrated sensing and communication (ISAC) systems that operate in the near-field region of large antenna arrays while utilizing large bandwidths. The article first describes the basic characteristics of a wideband sensing and communication (S&C) channel, highlighting the key changes that occur during the transition from the far-field to the near-field region, namely strong angular-delay correlations and non-uniform Doppler frequencies. It is then revealed that the near-field effect can facilitate wideband-like S&C functionality, leading to efficient signal multiplexing and accurate distance sensing, and making large antenna arrays a viable alternative to large bandwidths. In addition, new capabilities for Doppler-domain signal multiplexing and velocity sensing enabled by non-uniform Doppler frequencies, which cannot be achieved by extending the bandwidth alone, are presented. Motivated by these results, several paradigm shifts required to leverage the full potential of near-field wideband ISAC systems are discussed, with particular emphasis on spectrum allocation, antenna array arrangement, transceiver architecture, and waveform design.