PF
Pingyi Fan
Author with expertise in Wireless Energy Harvesting and Information Transfer
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(31% Open Access)
Cited by:
462
h-index:
42
/
i10-index:
180
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

AoI-Minimal Trajectory Planning and Data Collection in UAV-Assisted Wireless Powered IoT Networks

Huimin Hu et al.Jul 29, 2020
This article investigates the unmanned aerial vehicle (UAV)-assisted wireless powered Internet-of-Things system, where a UAV takes off from a data center, flies to each of the ground sensor nodes (SNs) in order to transfer energy and collect data from the SNs, and then returns to the data center. For such a system, an optimization problem is formulated to minimize the average Age of Information (AoI) of the data collected from all ground SNs. Since the average AoI depends on the UAV's trajectory, the time required for energy harvesting (EH) and data collection for each SN, these factors need to be optimized jointly. Moreover, instead of the traditional linear EH model, we employ a nonlinear model because the behavior of the EH circuits is nonlinear by nature. To solve this nonconvex problem, we propose to decompose it into two subproblems, i.e., a joint energy transfer and data collection time allocation problem and a UAV's trajectory planning problem. For the first subproblem, we prove that it is convex and give an optimal solution by using Karush-Kuhn-Tucker (KKT) conditions. This solution is used as the input for the second subproblem, and we solve optimally it by designing dynamic programming (DP) and ant colony (AC) heuristic algorithms. The simulation results show that the DP-based algorithm obtains the minimal average AoI of the system, and the AC-based heuristic finds solutions with near-optimal average AoI. The results also reveal that the average AoI increases as the flying altitude of the UAV increases and linearly with the size of the collected data at each ground SN.
0

UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing: Joint Offloading, CPU Control, and Trajectory Optimization

Yuan Liu et al.Dec 24, 2019
This article investigates the unmanned-aerial-vehicle (UAV)-enabled wireless powered cooperative mobile edge computing (MEC) system, where a UAV installed with an energy transmitter (ET) and an MEC server provides both energy and computing services to sensor devices (SDs). The active SDs desire to complete their computing tasks with the assistance of the UAV and their neighboring idle SDs that have no computing task. An optimization problem is formulated to minimize the total required energy of UAV by jointly optimizing the CPU frequencies, the offloading amount, the transmit power, and the UAV's trajectory. To tackle the nonconvex problem, a successive convex approximation (SCA)-based algorithm is designed. Since it may be with relatively high computational complexity, as an alternative, a decomposition and iteration (DAI)-based algorithm is also proposed. The simulation results show that both proposed algorithms converge within several iterations, and the DAI-based algorithm achieve the similar minimal required energy and optimized trajectory with the SCA-based one. Moreover, for a relatively large amount of data, the SCA-based algorithm should be adopted to find an optimal solution, while for a relatively small amount of data, the DAI-based algorithm is a better choice to achieve smaller computing energy consumption. It also shows that the trajectory optimization plays a dominant factor in minimizing the total required energy of the system and optimizing acceleration has a great effect on the required energy of the UAV. Additionally, by jointly optimizing the UAV's CPU frequencies and the amount of bits offloaded to UAV, the minimal required energy for computing can be greatly reduced compared to other schemes and by leveraging the computing resources of idle SDs, the UAV's computing energy can also be greatly reduced.
0

Joint Optimization of Age of Information and Energy Consumption in NR-V2X System Based on Deep Reinforcement Learning

Shulin Song et al.Jul 4, 2024
As autonomous driving may be the most important application scenario of the next generation, the development of wireless access technologies enabling reliable and low-latency vehicle communication becomes crucial. To address this, 3GPP has developed Vehicle-to-Everything (V2X) specifications based on 5G New Radio (NR) technology, where Mode 2 Side-Link (SL) communication resembles Mode 4 in LTE-V2X, allowing direct communication between vehicles. This supplements SL communication in LTE-V2X and represents the latest advancements in cellular V2X (C-V2X) with the improved performance of NR-V2X. However, in NR-V2X Mode 2, resource collisions still occur and thus degrade the age of information (AOI). Therefore, an interference cancellation method is employed to mitigate this impact by combining NR-V2X with Non-Orthogonal multiple access (NOMA) technology. In NR-V2X, when vehicles select smaller resource reservation intervals (RRIs), higher-frequency transmissions use more energy to reduce AoI. Hence, it is important to jointly considerAoI and communication energy consumption based on NR-V2X communication. Then, we formulate such an optimization problem and employ the Deep Reinforcement Learning (DRL) algorithm to compute the optimal transmission RRI and transmission power for each transmitting vehicle to reduce the energy consumption of each transmitting vehicle and the AoI of each receiving vehicle. Extensive simulations demonstrate the performance of our proposed algorithm.
Load More