YZ
Yi Zhang
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
715
h-index:
27
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process

Wenfang Gao et al.Jan 12, 2017
A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H2O2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li2CO3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.
0

Spent lithium-ion battery recycling – Reductive ammonia leaching of metals from cathode scrap by sodium sulphite

Xiaohong Zheng et al.Dec 18, 2016
Recycling of spent lithium-ion batteries has attracted wide attention because of their high content of valuable and hazardous metals. One of the difficulties for effective metal recovery is the separation of different metals from the solution after leaching. In this research, a full hydrometallurgical process is developed to selectively recover valuable metals (Ni, Co and Li) from cathode scrap of spent lithium ion batteries. By introducing ammonia-ammonium sulphate as the leaching solution and sodium sulphite as the reductant, the total selectivity of Ni, Co and Li in the first-step leaching solution is more than 98.6% while it for Mn is only 1.36%. In detail understanding of the selective leaching process is carried out by investigating the effects of parameters such as leaching reagent composition, leaching time (0-480min), agitation speed (200-700rpm), pulp density (10-50g/L) and temperature (323-353K). It was found that Mn is primarily reduced from Mn4+ into Mn2+ into the solution as [Formula: see text] while it subsequently precipitates out into the residue in the form of (NH4)2Mn(SO3)2·H2O. Ni, Co and Li are leached and remain in the solution either as metallic ion or amine complexes. The optimised leaching conditions can be further obtained and the leaching kinetics is found to be chemical reaction control under current leaching conditions. As a result, this research is potentially beneficial for further optimisation of the spent lithium ion battery recycling process after incorporating with metal extraction from the leaching solution.
0

65% cover is the sustainable vegetation threshold on the Loess Plateau

Yiping Chen et al.Jun 19, 2024
Global temperatures will continue to increase in the future. The ∼640,000-km2 Loess Plateau (LP) is a typical arid and semi-arid region in China. Similar regions cover ∼41% of the Earth, and its soils are some of the most severely eroded anywhere in the world. It is very important to understand the vegetation change and its ecological threshold under climate change on the LP for the sustainable development in the Yellow River Basin. However, little is known about how vegetation on the LP will respond to climate change and what is the sustainable threshold level of vegetation cover on the LP. Here we show that the temperature on the LP has risen 0.27 °C per decade over the past 50 years, a rate that is 30% higher than the average warming rate across China. During historical times, vegetation change was regulated by environmental factors and anthropogenic activities. Vegetation coverage was about 53% on the LP from the Xia Dynasty to the Spring and Autumn and Warring States period. Over the past 70 years, however, the environment has gradually improved and the vegetation cover had increased to ∼65% by 2021. We forecast future changes of vegetation cover on the LP in 2030s, in 2050s and in 2070s using SDM (Species Distribution Model) under Low-emission scenarios, Medium-emission scenarios and High-emission scenarios. An average value of vegetation cover under the three emission scenarios will be 64.67%, 62.70% and 61.47%, respectively. According to the historical record and SDM forecasts, the threshold level of vegetation cover on the LP is estimated to be 53–65%. Currently, vegetation cover on the LP has increased to the upper limit of the threshold value (∼65%). We conclude that the risk of ecosystem collapse on the LP will increase with further temperature increases once the vegetated area and density exceed the threshold value. It is urgent to adopt sustainable strategies such as stopping expanding vegetation area and scientifically optimizing the vegetation structure on the LP to improve the ecological sustainability of the Yellow River Basin.
0
0
Save
0

Mechanical Responses and Assessment of Fatigue Life for Submarine Suspended Pipelines

Yi Zhang et al.Jul 28, 2024
Abstract As an essential component for the transportation of oceanic oil and gas supplies, it is crucial to ensure the efficient operation of submarine pipelines. The fatigue failure of submarine pipelines occurs frequently under the combined effects of currents, waves and soil. Firstly, a pipe-soil interaction suspended pipeline model was developed, which could be used to simulate the mechanical behavior of pipes and the dynamic response of the combined loads of waves and currents. Then, the effects of soil properties, current direction and suspended length on the stress distribution and dynamic mechanical response of submarine suspended pipelines were investigated. In addition, the vibration characteristics of suspended pipelines affected by soil were revealed. At last, according to the vortex-induced resonance evaluation and fatigue life assessment method, the critical length of suspended pipelines for the Bohai sea was determined. The results show that the stress change in the center of the suspended section reaches the most significant for the pipeline with a length of less than 20m. When the suspended length exceeds 20m of the pipeline, the connection between the suspended section and the buried section shows the most dramatic stress fluctuations. Meanwhile, the cumulative damage of the submarine suspended pipeline entering the soil becomes the maximum, and fatigue failure often occurs in this position. The results are expected to provide an important theoretical basis in safe operation and repair decision of submarine pipeline.