AZ
A‐Xing Zhu
Author with expertise in Global Flood Risk Assessment and Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(56% Open Access)
Cited by:
3,798
h-index:
60
/
i10-index:
219
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A China data set of soil properties for land surface modeling

Wei Shangguan et al.Mar 14, 2013
A comprehensive 30×30 arc‐second resolution gridded soil characteristics data set of China has been developed for use in the land surface modeling. It includes physical and chemical attributes of soils derived from 8979 soil profiles and the Soil Map of China (1:1,000,000). We used the polygon linkage method to derive the spatial distribution of soil properties. The profile attribute database and soil map are linked under the framework of the Genetic Soil Classification of China which avoids uncertainty in taxon referencing. Quality control information (i.e., sample size, soil classification level, linkage level, search radius and texture) is included to provide “confidence” information for the derived soil parameters. The data set includes 28 attributes for 8 vertical layers at the spatial resolution of 30×30 arc‐seconds. Based on this data set, the estimated storage of soil organic carbon in the upper 1 m of soil is 72.5 Pg, total N is 6.6 Pg, total P is 4.5 Pg, total K is 169.9 Pg, alkali‐hydrolysable N is 0.55 Pg, available P is 0.03 Pg, and available K is 0.61 Pg. These estimates are reasonable compared with previous studies. The distributions of soil properties are consistent with common knowledge of Chinese soil scientists and the spatial variations over large areas are well represented. The data set can be incorporated into land models to better represent the role of soils in hydrological and biogeochemical cycles in China.
0
Paper
Citation463
0
Save
0

Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)

Haoyuan Hong et al.Jan 8, 2018
Landslides are a manifestation of slope instability causing different kinds of damage affecting life and property. Therefore, high-performance-based landslide prediction models are useful to government institutions for developing strategies for landslide hazard prevention and mitigation. Development of data mining based algorithms shows that high-performance models can be obtained using ensemble frameworks. The primary objective of this study is to investigate and compare the use of current state-of-the-art ensemble techniques, such as AdaBoost, Bagging, and Rotation Forest, for landslide susceptibility assessment with the base classifier of J48 Decision Tree (JDT). The Guangchang district (Jiangxi province, China) was selected as the case study. Firstly, a landslide inventory map with 237 landslide locations was constructed; the landslide locations were then randomly divided into a ratio of 70/30 for the training and validating models. Secondly, fifteen landslide conditioning factors were prepared, such as slope, aspect, altitude, topographic wetness index (TWI), stream power index (SPI), sediment transport index (STI), plan curvature, profile curvature, lithology, distance to faults, distance to rivers, distance to roads, land use, normalized difference vegetation index (NDVI), and rainfall. Relief-F with the 10-fold cross-validation method was applied to quantify the predictive ability of the conditioning factors and for feature selection. Using the JDT and its three ensemble techniques, a total of four landslide susceptibility models were constructed. Finally, the overall performance of the resulting models was assessed and compared using area under the receiver operating characteristic (ROC) curve (AUC) and statistical indexes. The result showed that all landslide models have high performance (AUC > 0.8). However, the JDT with the Rotation Forest model presents the highest prediction capability (AUC = 0.855), followed by the JDT with the AdaBoost (0.850), the Bagging (0.839), and the JDT (0.814), respectively. Therefore, the result demonstrates that the JDT with Rotation Forest is the best optimized model in this study and it can be considered as a promising method for landslide susceptibility mapping in similar cases for better accuracy.
0
Paper
Citation432
0
Save
0

Soil Mapping Using GIS, Expert Knowledge, and Fuzzy Logic

A‐Xing Zhu et al.Sep 1, 2001
A geographical information system (GIS) or expert knowledge‐based fuzzy soil inference scheme (soil‐land inference model, SoLIM) is described. The scheme consists of three major components: (i) a model employing a similarity representation of soils, (ii) a set of inference techniques for deriving the similarity representation, and (iii) use of the similarity representation. The similarity representation allows the soil landscape to be considered as a continuum, and thereby overcomes the generalization of soils in conventional soil mapping. The set of inference techniques is based on the soil factor equation and the soil–landscape model. The soil–landscape concept contends that if one knows the relationships between each soil and its environment for an area, then one is able to infer what soil might be at each location on the landscape by assessing the environmental conditions at that point. Under the SoLIM, soil environmental conditions over an area are characterized using GIS or remote sensing techniques. The relationships between soils and their formative environmental conditions are extracted from local soil experts or from field observations using a set of artificial intelligence techniques. The characterized environmental conditions are then combined with the extracted relationships to derive a similarity representation of soils over an area. It is demonstrated through two case studies that the SoLIM for soil survey has many advantages over the conventional soil survey approach. Soil information products derived through the SoLIM are of high quality in terms of both level of spatial detail and degree of attribute accuracy. In addition, the scheme shows promise for improving the efficiency of soil survey and subsequent updates through reducing time and costs of conducting a survey. However, the degree of success of the SoLIM highly depends on the availability and quality of environmental data, and the quality of knowledge on soil–environmental relationships over the study area.
0

Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China

Wei Chen et al.Feb 19, 2018
The preparation of a landslide susceptibility map is considered to be the first step for landslide hazard mitigation and risk assessment. However, these maps are accepted as end products that can be used for land use planning. The main goal of this study is to assess and compare four advanced machine learning techniques, namely the Bayes' net (BN), radical basis function (RBF) classifier, logistic model tree (LMT), and random forest (RF) models, for landslide susceptibility modelling in Chongren County, China. A total of 222 landslide locations were identified in the study area using historical reports, interpretation of aerial photographs, and extensive field surveys. The landslide inventory data was randomly split into two groups with a ratio of 70/30 for training and validation purposes. Fifteen landslide conditioning factors were prepared for landslide susceptibility modelling. The spatial correlation between landslides and conditioning factors was analyzed using the information gain (IG) method. The BN, RBF classifier, LMT, and RF models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) and statistical measures, including sensitivity, specificity, and accuracy, were employed to validate and compare the predictive capabilities of the models. Out of the tested models, the RF model had the highest sensitivity, specificity, and accuracy values of 0.787, 0.716, and 0.752, respectively, for the training dataset. Overall, the RF model produced an optimized balance for the training and validation datasets in terms of AUC values and statistical measures. The results of this study also demonstrate the benefit of selecting optimal machine learning techniques with proper conditioning selection methods for landslide susceptibility modelling.
0
Paper
Citation363
0
Save
0

Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution

Haoyuan Hong et al.Feb 2, 2018
Floods are among Earth's most common natural hazards, and they cause major economic losses and seriously affect peoples' lives and health. This paper addresses the development of a flood susceptibility assessment that uses intelligent techniques and GIS. An adaptive neuro-fuzzy inference system (ANFIS) was coupled with a genetic algorithm and differential evolution for flood spatial modelling. The model considers thirteen hydrologic, morphologic and lithologic parameters for the flood susceptibility assessment, and Hengfeng County in China was chosen for the application of the model due to data availability and the 195 total flood events. The flood locations were randomly divided into two subsets, namely, training (70% of the total) and testing (30%). The Step-wise Weight Assessment Ratio Analysis (SWARA) approach was used to assess the relation between the floods and influencing parameters. Subsequently, two data mining techniques were combined with the ANFIS model, including the ANFIS-Genetic Algorithm and the ANFIS-Differential Evolution, to be used for flood spatial modelling and zonation. The flood susceptibility maps were produced, and their robustness was checked using the Receiver Operating Characteristic (ROC) curve. The results showed that the area under the curve (AUC) for all models was > 0.80. The highest AUC value was for the ANFIS-DE model (0.852), followed by ANFIS-GA (0.849). According to the RMSE and MSE methods, the ANFIS-DE hybrid model is more suitable for flood susceptibility mapping in the study area. The proposed method is adaptable and can easily be applied in other sites for flood management and prevention.
0

Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China

Haoyuan Hong et al.Dec 29, 2017
In China, floods are considered as the most frequent natural disaster responsible for severe economic losses and serious damages recorded in agriculture and urban infrastructure. Based on the international experience prevention of flood events may not be completely possible, however identifying susceptible and vulnerable areas through prediction models is considered as a more visible task with flood susceptibility mapping being an essential tool for flood mitigation strategies and disaster preparedness. In this context, the present study proposes a novel approach to construct a flood susceptibility map in the Poyang County, JiangXi Province, China by implementing fuzzy weight of evidence (fuzzy-WofE) and data mining methods. The novelty of the presented approach is the usage of fuzzy-WofE that had a twofold purpose. Firstly, to create an initial flood susceptibility map in order to identify non-flood areas and secondly to weight the importance of flood related variables which influence flooding. Logistic Regression (LR), Random Forest (RF) and Support Vector Machines (SVM) were implemented considering eleven flood related variables, namely: lithology, soil cover, elevation, slope angle, aspect, topographic wetness index, stream power index, sediment transport index, plan curvature, profile curvature and distance from river network. The efficiency of this new approach was evaluated using area under curve (AUC) which measured the prediction and success rates. According to the outcomes of the performed analysis, the fuzzy WofE-SVM model was the model with the highest predictive performance (AUC value, 0.9865) which also appeared to be statistical significant different from the other predictive models, fuzzy WofE-RF (AUC value, 0.9756) and fuzzy WofE-LR (AUC value, 0.9652). The proposed methodology and the produced flood susceptibility map could assist researchers and local governments in flood mitigation strategies.
0
Paper
Citation344
0
Save
0

Mapping high resolution National Soil Information Grids of China

Feng Liu et al.Oct 22, 2021
Soil spatial information has traditionally been presented as polygon maps at coarse scales. Solving global and local issues, including food security, water regulation, land degradation, and climate change requires higher quality, more consistent and detailed soil information. Accurate prediction of soil variation over large and complex areas with limited samples remains a challenge, which is especially significant for China due to its vast land area which contains the most diverse soil landscapes in the world. Here, we integrated predictive soil mapping paradigm with adaptive depth function fitting, state-of-the-art ensemble machine learning and high-resolution soil-forming environment characterization in a high-performance parallel computing environment to generate 90-m resolution national gridded maps of nine soil properties (pH, organic carbon, nitrogen, phosphorus, potassium, cation exchange capacity, bulk density, coarse fragments, and thickness) at multiple depths across China. This was based on approximately 5000 representative soil profiles collected in a recent national soil survey and a suite of detailed covariates to characterize soil-forming environments. The predictive accuracy ranged from very good to moderate (Model Efficiency Coefficients from 0.71 to 0.36) at 0-5 cm. The predictive accuracy for most soil properties declined with depth. Compared with previous soil maps, we achieved significantly more detailed and accurate predictions which could well represent soil variations across the territory and are a significant contribution to the GlobalSoilMap.net project. The relative importance of soil-forming factors in the predictions varied by specific soil property and depth, suggesting the complexity and non-stationarity of comprehensive multi-factor interactions in the process of soil development.
0
Paper
Citation283
0
Save
Load More