CA
Christopher Anderson
Author with expertise in Environmental Impact of Heavy Metal Contamination
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
507
h-index:
34
/
i10-index:
61
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold

Andrew Taylor et al.Apr 15, 2014
We have studied the physiological and genetic responses of Arabidopsis thaliana L. (Arabidopsis) to gold. The root lengths of Arabidopsis seedlings grown on nutrient agar plates containing 100 mg/L gold were reduced by 75%. Oxidized gold was subsequently found in roots and shoots of these plants, but gold nanoparticles (reduced gold) were only observed in the root tissues. We used a microarray-based study to monitor the expression of candidate genes involved in metal uptake and transport in Arabidopsis upon gold exposure. There was up-regulation of genes involved in plant stress response such as glutathione transferases, cytochromes P450, glucosyl transferases and peroxidases. In parallel, our data show the significant down-regulation of a discreet number of genes encoding proteins involved in the transport of copper, cadmium, iron and nickel ions, along with aquaporins, which bind to gold. We used Medicago sativa L. (alfalfa) to study nanoparticle uptake from hydroponic culture using ionic gold as a non-nanoparticle control and concluded that nanoparticles between 5 and 100 nm in diameter are not directly accumulated by plants. Gold nanoparticles were only observed in plants exposed to ionic gold in solution. Together, we believe our results imply that gold is taken up by the plant predominantly as an ionic form, and that plants respond to gold exposure by up-regulating genes for plant stress and down-regulating specific metal transporters to reduce gold uptake.
0

The Potential Impact of Long-Term Copper Fungicide Sprays on Soil Health in Avocado Orchards

Dumsane Matse et al.May 25, 2024
The long-term use of copper (Cu)-based fungicide sprays in orchards is associated with changes in soil Cu levels. However, there is a gap in knowledge regarding the potential accumulation of Cu in orchards and the associated impacts on the soil microbial structure. This study assessed the possibility of Cu accumulation in different avocado orchard farms and further evaluated the potential effect on soil microbial activities. Soil Cu levels were quantified in Tauranga and Northland, and three avocado orchards were analysed in each experimental location. All avocado farms in both sites received Cu-based fungicide sprays for over eight years. Soil samples were collected at a 0–20 cm depth from all six orchards. The soil total and bioavailable Cu, changes in soil chemical properties, microbial biomass, dehydrogenase activity, alkaline phosphatase activity, and acid phosphatase activity were measured. The results revealed that the total Cu and bioavailable Cu concentrations in Tauranga orchards were 81.3 and 0.32, 196.7 and 0.82, and 33.6 and 0.31 mg Cu kg−1 in Farms 1, 2, and 3, respectively. In Northland orchards, the total Cu and bioavailable Cu were 54.5 and 0.06, 18.4 and 0.77, and 46 and 0.34 mg Cu kg−1 in Farm 1, 2, and 3, respectively. Five out of six of the avocado orchard farms assessed in this study had total Cu concentrations greater than 30 mg Cu kg−1 reported in New Zealand native land. The magnitude of Cu accumulation was linked with soil pH and C content. No clear trend was observed between soil Cu concentrations and the soil microbial activity. Our study results demonstrated that the long-term use of Cu-based fungicide sprays can elevate Cu concentrations in orchard soils. Mitigation strategies need to be explored to abate the accumulation of Cu in orchard soils.
0

Soil nitrogen dynamics affected by coffee (coffea arabica) canopy and fertilizer management in coffee-based agroforestry

Syahrul Kurniawan et al.May 27, 2024
Abstract Nutrient management in coffee-based agroforestry systems plays a critical role in soil nitrogen (N) cycling, but has not been well documented. The objective of this study was to evaluate the effect of coffee canopy management and fertilization on soil N dynamics. This study used a randomized complete block design (2 × 3 × 2) with four replications. There were three factors: 1) coffee canopy management (T1: Pruned, T2: Unpruned), 2) fertilizer type (O: Organic, I: Inorganic; M: 50% Organic + 50% Inorganic), and 3) fertilizer dose (D1: low, D2: medium, D3: high). Soil N dynamic indicators (i.e., total N, ammonium (NH 4 + ), nitrate (NO 3 − ), net N-NH 4 + , net N-NO 3 − , soil microbial biomass N) were measured at two soil sampling depths (0–20 cm and 20–40 cm). Results showed that pruning increased soil total N and microbial biomass N (MBN) by 10–56% relative to unpruned coffee trees. In contrast, the unpruned coffee canopy had 15–345% higher NH 4 + , NO 3 − , net N-NH 4 + , net N-NO 3 − , and microbial biomass N concentration than pruned coffee. Mixed fertilizer application increased NO 3 − and net N-NH 4 + accumulation by 5–15% relative to inorganic and organic fertilizers. In addition, medium to high dose fertilization led to a 19–86% higher net N-NO 3 − concentration and microbial biomass N as compared to low dose fertilization. The treatment of no pruning and mixed fertilizer at low to medium doses was the optimal management strategy to maintain soil available N, while pruning combined with organic fertilizer has the potential to improve soil total N and MBN.
0

Phosphorus limitation on CO2 fertilization effect in tropical forests informed by a coupled biogeochemical model

Zhuonan Wang et al.Jan 1, 2024
Tropical forests store more than half of the world's terrestrial carbon (C) pool and account for one-third of global net primary productivity (NPP). Many terrestrial biosphere models (TBMs) estimate increased productivity in tropical forests throughout the 21st century due to CO2 fertilization. However, phosphorus (P) limitations on vegetation photosynthesis and productivity could significantly reduce the CO2 fertilization effect. Here, we used a carbon-nitrogen-phosphorus coupled model (Dynamic Land Ecosystem Model; DLEM-CNP) with heterogeneous maximum carboxylation rates to examine how P limitation has affected C fluxes in tropical forests during 1860–2018. Our model results showed that the inclusion of the P processes enhanced model performance in simulating ecosystem productivity. We further compared the simulations from DLEM-CNP, DLEM-CN, and DLEM-C and the results showed that the inclusion of P processes reduced the CO2 fertilization effect on gross primary production (GPP) by 25% and 45%, and net ecosystem production (NEP) by 28% and 41%, respectively, relative to CN-only and C-only models. From the 1860s to the 2010s, the DLEM-CNP estimated that in tropical forests GPP increased by 17%, plant respiration (Ra) increased by 18%, ecosystem respiration (Rh) increased by 13%, NEP increased by 121% per unit area, respectively. Additionally, factorial experiments with DLEM-CNP showed that the enhanced NPP benefiting from the CO2 fertilization effect had been offset by 135% due to deforestation from the 1860s to the 2010s. Our study highlights the importance of P limitation on the C cycle and the weakened CO2 fertilization effect resulting from P limitation in tropical forests.
0
0
Save
0

Novel Insights into Hg0 Oxidation in Rice Leaf: Catalase Functions and Transcriptome Responses

Weijun Tian et al.Jan 3, 2025
Rice leaves can assimilate atmospheric mercury (Hg0), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg0 assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg0 oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg0. The inactivation of catalase reduced Hg0 oxidation by 91% in the leaf homogenate and the Hg0 oxidation rate increased along with CAT activity, showing the CAT's function in Hg0 oxidation. Hg0 was converted to Hg(cysteine)2 complexes in the leaf. Transcriptomic results revealed that the expression levels of both OsCATA and OsCATB (catalase-encoding genes) increased with Hg concentration, suggesting the involvement of catalase-related molecular network in Hg0 oxidation. Upstream transcription factors, including NAC (NAM-no apical meristem, ATAF-Arabidopsis transcription activation factor, and CUC-cup-shaped cotyledon), and ethylene-responsive transcription factor, are likely involved in catalase expression. Genes related to cysteine metabolism and amino acid transport appeared to regulate Hg accumulation. Our findings demonstrate the important function of catalase in Hg0 oxidation within rice and are fundamental for developing genetically modified rice cultivars to minimize human Hg exposure health risks.