SM
Snezana Maljevic
Author with expertise in Molecular Basis of Rett Syndrome and Related Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
1,441
h-index:
37
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak

Yvonne Weber et al.Apr 30, 2008
Paroxysmal dyskinesias are episodic movement disorders that can be inherited or are sporadic in nature. The pathophysiology underlying these disorders remains largely unknown but may involve disrupted ion homeostasis due to defects in cell-surface channels or nutrient transporters. In this study, we describe a family with paroxysmal exertion-induced dyskinesia (PED) over 3 generations. Their PED was accompanied by epilepsy, mild developmental delay, reduced CSF glucose levels, hemolytic anemia with echinocytosis, and altered erythrocyte ion concentrations. Using a candidate gene approach, we identified a causative deletion of 4 highly conserved amino acids (Q282_S285del) in the pore region of the glucose transporter 1 (GLUT1). Functional studies in Xenopus oocytes and human erythrocytes revealed that this mutation decreased glucose transport and caused a cation leak that alters intracellular concentrations of sodium, potassium, and calcium. We screened 4 additional families, in which PED is combined with epilepsy, developmental delay, or migraine, but not with hemolysis or echinocytosis, and identified 2 additional GLUT1 mutations (A275T, G314S) that decreased glucose transport but did not affect cation permeability. Combining these data with brain imaging studies, we propose that the dyskinesias result from an exertion-induced energy deficit that may cause episodic dysfunction of the basal ganglia, and that the hemolysis with echinocytosis may result from alterations in intracellular electrolytes caused by a cation leak through mutant GLUT1.
1
Citation344
0
Save
0

Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1

Arvid Suls et al.Jun 24, 2008
Paroxysmal exercise-induced dyskinesia (PED) can occur in isolation or in association with epilepsy, but the genetic causes and pathophysiological mechanisms are still poorly understood. We performed a clinical evaluation and genetic analysis in a five-generation family with co-occurrence of PED and epilepsy (n = 39), suggesting that this combination represents a clinical entity. Based on a whole genome linkage analysis we screened SLC2A1, encoding the glucose transporter of the blood-brain-barrier, GLUT1 and identified heterozygous missense and frameshift mutations segregating in this and three other nuclear families with a similar phenotype. PED was characterized by choreoathetosis, dystonia or both, affecting mainly the legs. Predominant epileptic seizure types were primary generalized. A median CSF/blood glucose ratio of 0.52 (normal >0.60) in the patients and a reduced glucose uptake by mutated transporters compared with the wild-type as determined in Xenopus oocytes confirmed a pathogenic role of these mutations. Functional imaging studies implicated alterations in glucose metabolism in the corticostriate pathways in the pathophysiology of PED and in the frontal lobe cortex in the pathophysiology of epileptic seizures. Three patients were successfully treated with a ketogenic diet. In conclusion, co-occurring PED and epilepsy can be due to autosomal dominant heterozygous SLC2A1 mutations, expanding the phenotypic spectrum associated with GLUT1 deficiency and providing a potential new treatment option for this clinical syndrome.
0
Citation322
0
Save
0

Dominant‐negative effects of KCNQ2 mutations are associated with epileptic encephalopathy

Gökce Orhan et al.Dec 7, 2013
Mutations in KCNQ2 and KCNQ3, encoding the voltage-gated potassium channels KV 7.2 and KV 7.3, are known to cause benign familial neonatal seizures mainly by haploinsufficiency. Here, we set out to determine the disease mechanism of 7 de novo missense KCNQ2 mutations that were recently described in patients with a severe epileptic encephalopathy including pharmacoresistant seizures and pronounced intellectual disability.Mutations were inserted into the KCNQ2 cDNA. Potassium currents were recorded using 2-microelectrode voltage clamping, and surface expression was analyzed by a biotinylation assay in cRNA-injected Xenopus laevis oocytes.We observed a clear loss of function for all mutations. Strikingly, 5 of 7 mutations exhibited a drastic dominant-negative effect on wild-type KV 7.2 or KV 7.3 subunits, either by globally reducing current amplitudes (3 pore mutations) or by a depolarizing shift of the activation curve (2 voltage sensor mutations) decreasing potassium currents at the subthreshold level at which these channels are known to critically influence neuronal firing. One mutation significantly reduced surface expression. Application of retigabine, a recently marketed KV 7 channel opener, partially reversed these effects for the majority of analyzed mutations.The development of severe epilepsy and cognitive decline in children carrying 5 of the 7 studied KCNQ2 mutations can be related to a dominant-negative reduction of the resulting potassium current at subthreshold membrane potentials. Other factors such as genetic modifiers have to be postulated for the remaining 2 mutations. Retigabine or similar drugs may be used as a personalized therapy for this severe disease.
0
Citation244
0
Save
19

Antisense oligonucleotide therapy for SCN2A gain-of-function epilepsy

Melody Li et al.Sep 11, 2020
Abstract The clinical spectrum associated with SCN2A de novo mutations (DNMs) continues to expand and includes autism spectrum disorder with or without seizures, in addition to early and late seizure onset developmental and epileptic encephalopathies (DEEs). Recent biophysical studies on SCN2A variants suggest that the majority of early seizure onset DEE DNMs cause gain of function. Gain of function in SCN2A, the principal sodium channel of excitatory pyramidal neurons, would result in heightened neuronal activity and is likely to underlie the pathology seen in early seizure onset DEE patients. Supratherapeutic dosing of the non-selective sodium channel blocker phenytoin, is effective in controlling seizures in these patients but does not impact neurodevelopment, raising the idea that more profound and specific reduction in SCN2A function could significantly improve clinical outcome. To test the potential therapeutic benefit of reducing SCN2A in early seizure onset DEE we centrally administered an antisense oligonucleotide (ASO) targeting mouse Scn2a (Scn2a ASO) to a mouse model of human SCN2A early seizure onset DEE. Mice were genetically engineered to harbour the human equivalent SCN2A p.R1882Q mutation (Q/+), one of the most recurrent mutations in early seizure onset DEE. Q/+ mice presented with spontaneous seizures at postnatal day (P) 1 and did not survive beyond P30. Intracerebroventricular Scn2a ASO administration into Q/+ mice between P1-2 (that reduced Scn2a mRNA levels by 50%) significantly extended lifespan and markedly reduced spontaneous seizures occurrence. Across a range of cognitive and motor behavioural tests, Scn2a ASO treated Q/+ mice were largely indistinguishable from wildtype (+/+) mice. Further improvements in survival and behaviour were seen by adjustment of dosing regimens during development. Scn2a ASO efficacy was also evident at the cellular level. Whole cell patch clamp recording showed that Scn2a ASO administration reversed changes in neuronal excitability in layer 2/3 pyramidal neurons of Q/+ mice to levels seen in +/+ mice. Safety was assessed in +/+ mice and showed a developmental stage dependent tolerability and a favourable therapeutic index. This study suggests that a human SCN2A gapmer ASO could profoundly and safely impact early seizure onset DEE patients and heralds a new era of precision therapy in neurodevelopmental disorders.
19
Citation13
0
Save
0

Electrophysiological signatures of a developmental delay in a stem cell model ofKCNQ2developmental and epileptic encephalopathy

Filip Rosa et al.Mar 13, 2024
Abstract Background KCNQ2 , encoding K V 7.2 ion channels, has emerged as one of the prominent genes causing early onset seizures with developmental delay ( KCNQ2 developmental and epileptic encephalopathy; KCNQ2 -DEE). KCNQ2 de novo loss-of-function (LOF) and associated neuronal hyperexcitability have been accepted as mechanisms contributing to seizures. To investigate the developmental impact of KCNQ2 LOF, we generated patient iPSC-derived models for two previously reported de novo variants, p.(Arg325Gly) and p.(Gly315Arg), linked to severe congenital DEE. Methods Functional investigation of the two variants was initially performed in Xenopus laevis oocyte system. Patient-derived iPSC lines were differentiated using NGN2- and embryoid body-based protocols yielding neurons roughly corresponding to mid- and mid-late gestational stages, respectively. K V 7- mediated M-current, passive neuronal properties, action potential generation and spontaneous oscillatory network activities were analysed with whole-cell patch clamping. Findings Studied KCNQ2 variants showed LOF with a dominant-negative effect in the heterologous system. Reduced M-currents in patient iPSC-derived neurons corroborated a LOF as the main pathomechanism. Interestingly, this led to the reduced neuronal firing of the early neurons and to a disruption of complex oscillatory activity, with significantly reduced duration and amplitude of these events in patient iPSC-derived neurons. Interpretation We provide experimental evidence for changing roles of the M-current throughout development and place disease variant-mediated M-current reduction in the context of the neuronal maturation in the prenatal brain. Based on the reduced neuronal firing and disrupted oscillatory activity seen in patient iPSC-derived neurons, we propose that a delayed/impaired maturation of neuronal and network properties underlies KCNQ -DEE caused by LOF variants.
0
Citation1
0
Save
4

Distinctivein vitrophenotypes in iPSC-derived neurons from patients with gain- and loss-of-functionSCN2Adevelopmental and epileptic encephalopathy

Miaomiao Mao et al.Feb 15, 2023
Abstract SCN2A encodes Na V 1.2, an excitatory neuron voltage-gated sodium channel and major monogenic cause of neurodevelopmental disorders, including developmental and epileptic encephalopathies (DEE) and autism. Clinical presentation and pharmocosensitivity vary with nature of SCN2A variant dysfunction with gain-of-function (GoF) cases presenting with pre- or peri-natal seizures and loss-of-function (LoF) patients typically having infantile spasms after 6 months of age. Here, we established and assessed patient induced pluripotent stem cell (iPSC) - derived neuronal models for two recurrent SCN2A DEE variants with GoF R1882Q and LoF R853Q associated with early- and late-onset DEE, respectively. Patient-derived iPSC lines were differentiated using a Neurogenin-2 overexpression yielding populations of cortical-like glutamatergic neurons. Electrophysiological and transcriptomic profiles were assessed after 2-4 weeks in culture. Increased neuronal activity at both cellular and network level was observed for R1882Q iPSC-derived neurons at three weeks of differentiation. In contrast, R853Q neurons showed only subtle changes in excitability after four weeks in vitro . In alignment with the reported efficacy in some GoF SCN2A patients, phenytoin (sodium channel blocker) reduced excitability of neurons to the control levels in R1882Q neuronal cultures. Transcriptomic alterations in neurons were detected for each variant and convergent pathways pointed at the shared mechanisms underlying SCN2A DEE.
0

Standardizing a method for functional assessment of neural networks in brain organoids

Megan Oliva et al.May 31, 2024
During the last decade brain organoids have emerged as an attractive model system, allowing stem cells to be differentiated into complex 3D models, recapitulating many aspects of human brain development. Whilst many studies have analysed anatomical and cytoarchitectural characteristics of organoids, their functional characterisation has been limited, and highly variable between studies. Standardised, consistent methods for recording functional activity are critical to providing a functional understanding of neuronal networks at the synaptic and network level that can yield useful information about functional network phenotypes in disease and healthy states. In this study we outline a detailed methodology for calcium imaging and Multi-Electrode Array (MEA) recordings in brain organoids. To illustrate the utility of these functional interrogation techniques in uncovering induced differences in neural network activity we applied various stimulating media protocols. We demonstrate overlapping information from the two modalities, with comparable numbers of active cells in the four treatment groups and an increase in synchronous behaviour in BrainPhys treated groups. Further development of analysis pipelines to reveal network level changes in brain organoids will enrich our understanding of network formation and perturbation in these structures, and aid in the future development of drugs that target neurological disorders at the network level.
0

Emerging neurodevelopmental mechanisms in patient induced pluripotent stem cells-derived spheroids modellingSCN1ADravet Syndrome

Cristiana Mattei et al.May 10, 2024
Abstract SCN1A encodes Naᵥ1.1, a voltage-gated sodium channel preferentially expressed in GABAergic interneurons, and it is the major cause of Dravet Syndrome (DS), a rare condition of developmental and epileptic encephalopathy (DEE). Among over 1000 DS mutations reported to date, almost all cause SCN1A loss-of function (LoF). A reduction in NaV1.1 function in inhibitory neurons would subsequently cause an over-excitation of glutamatergic neurons resulting in seizures, which are exacerbated by the use of sodium channel blocking common anti-seizure medications (ASM). In this study we generated and assessed 3D spheroids enriched with GABAergic neurons from SCN1A DS patient to establish a 3D human-derived DS model. To investigate developmental disruptions in DS pathophysiology we profiled the transcriptome of patient-derived spheroids and subsequently, tested the capability of this 3D in vitro model to reveal the cellular mechanisms of DS and predict drug response. In summary, our patient iPSC-derived neuronal model of SCN1A DS revealed a profound dysregulation of developmental processes which correlated with functional disruption in GABAergic neurons and predicted response to fenfluramine, an ASM increasingly used for the treatment of DS.
Load More