YZ
Yan Zhu
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(18% Open Access)
Cited by:
3,440
h-index:
60
/
i10-index:
254
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo

Yan Li et al.Jan 3, 2007
Abstract Bone homeostasis is regulated by a delicate balance between osteoblastic bone formation and osteoclastic bone resorption. Osteoclastogenesis is controlled by the ratio of receptor activator of NF-κB ligand (RANKL) relative to its decoy receptor, osteoprotegerin (OPG). The source of OPG has historically been attributed to osteoblasts (OBs). While activated lymphocytes play established roles in pathological bone destruction, no role for lymphocytes in basal bone homeostasis in vivo has been described. Using immunomagnetic isolation of bone marrow (BM) B cells and B-cell precursor populations and quantitation of their OPG production by enzyme-linked immunosorbent assay (ELISA) and real-time reverse transcriptase–polymerase chain reaction (RT-PCR), cells of the B lineage were found to be responsible for 64% of total BM OPG production, with 45% derived from mature B cells. Consistently B-cell knockout (KO) mice were found to be osteoporotic and deficient in BM OPG, phenomena rescued by B-cell reconstitution. Furthermore, T cells, through CD40 ligand (CD40L) to CD40 costimulation, promote OPG production by B cells in vivo. Consequently, T-cell–deficient nude mice, CD40 KO mice, and CD40L KO mice display osteoporosis and diminished BM OPG production. Our data suggest that lymphocytes are essential stabilizers of basal bone turnover and critical regulators of peak bone mass in vivo.
0

The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration

Zhihong Wang et al.Apr 18, 2014
The vascular grafts prepared by electrospinning often have relatively small pores, which limit cell infiltration into the grafts and hinder the regeneration and remodeling of the grafts into neoarteries. To overcome this problem, macroporous electrospun polycaprolactone (PCL) scaffolds with thicker fibers (5–6 μm) and larger pores (∼30 μm) were fabricated in the present study. In vitro cell culture indicated that macrophages cultured on thicker-fiber scaffolds tended to polarize into the immunomodulatory and tissue remodeling (M2) phenotype, while those cultured on thinner-fiber scaffolds expressed proinflammatory (M1) phenotype. In vivo implantation by replacing rat abdominal aorta was performed and followed up for 7, 14, 28 and 100 d. The results demonstrated that the macroporous grafts markedly enhanced cell infiltration and extracellular matrix (ECM) secretion. All grafts showed satisfactory patency for up to 100 days. At day 100, the endothelium coverage was complete, and the regenerated smooth muscle layer was correctly organized with abundant ECM similar to those in the native arteries. More importantly, the regenerated arteries demonstrated contractile response to adrenaline and acetylcholine-induced relaxation. Analysis of the cellularization process revealed that the thicker-fiber scaffolds induced a large number of M2 macrophages to infiltrate into the graft wall. These macrophages further promoted cellular infiltration and vascularization. In conclusion, the present study confirmed that the scaffold structure can regulate macrophage phenotype. Our thicker-fiber electrospun PCL vascular grafts could enhance the vascular regeneration and remodeling process by mediating macrophage polarization into M2 phenotype, suggesting that our constructs may be a promising cell-free vascular graft candidate and are worthy for further in vivo evaluation.
0

Multi‐Group Polymer Coating on Zn Anode for High Overall Conversion Efficiency Photorechargeable Zinc‐Ion Batteries

Ming Chen et al.Jun 27, 2024
The solar‐driven photorechargeable zinc‐ion batteries have emerged as a promising power solution for smart electronic devices and equipment. However, the subpar cyclic stability of the Zn anode remains a significant impediment to their practical application. Herein, poly(diethynylbenzene‐1,3,5‐triimine‐2,4,6‐trione) (PDPTT) was designed as a functional polymer coating of Zn. Theoretical calculations demonstrate that the PDPTT coating not only significantly homogenizes the electric field distribution on the Zn surface, but also promotes ion‐accessible surface of Zn. With multiple N and C=O groups exhibiting strong adsorption energies, this polymer coating reduces the nucleation overpotential of Zn, alters the diffusion pathway of Zn2+ at the anode interface, and decreases the corrosion current and hydrogen evolution current. Leveraging these advantages, Zn‐PDPTT//Zn‐PDPTT exhibits an exceptionally long cycling time (≥4300 h, 1 mA cm‐2). Zn‐PDPTT//AC zinc‐ion hybrid capacitors can withstand 50,000 cycles at 5 A/g. Zn‐PDPTT//NVO zinc‐ion battery exhibits a faster charge storage rate, higher capacity, and excellent cycling stability. Coupling Zn‐PDPTT//NVO with high‐performance perovskite solar cells results in a 13.12% overall conversion efficiency for the photorechargeable zinc‐ion battery, showcasing significant value in advancing the efficiency and upgrading conversion of renewable energy utilization.
Load More