TO
Takashi Okumura
Author with expertise in Pancreatic Cancer Research and Treatment
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2
h-index:
24
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Loss of Rnf43 accelerates Kras-mediated neoplasia and remodels the tumor immune microenvironment in pancreatic adenocarcinoma

Abdel Hosein et al.May 30, 2021
Abstract RNF43 is an E3 ubiquitin ligase that is recurrently mutated in pancreatic ductal adenocarcinoma (PDAC) and precursor cystic neoplasms of the pancreas. The impact of RNF43 mutations on PDAC is poorly understood and autochthonous models have not been sufficiently characterized. In this study we describe a genetically engineered mouse model (GEMM) of PDAC with conditional expression of oncogenic Kras and deletion of the catalytic domain of Rnf43 (KRC) in exocrine cells. We demonstrate that Rnf43 loss results in an increased incidence of high-grade cystic lesions of the pancreas and PDAC. Importantly, KRC mice have a significantly decreased survival compared to mice containing only an oncogenic Kras mutation. By use of single cell RNA sequencing we demonstrated that KRC tumor progression is accompanied by a decrease in macrophages, as well as an increase in T and B lymphocytes with evidence of increased immune checkpoint molecule expression and affinity maturation, respectively. This was in stark contrast to the tumor immune microenvironment observed in the Kras / Tp53 driven PDAC GEMM. Furthermore, expression of the chemokine, CXCL5, was found to be specifically decreased in KRC cancer cells by means of epigenetic regulation and emerged as a putative candidate for mediating the unique KRC immune landscape. This GEMM establishes RNF43 as a bona fide tumor suppressor gene in PDAC and puts forth a rationale for an immunotherapy approach in this subset of PDAC cases.
23
Citation1
0
Save
3

The Drosophila AWP1 ortholog Doctor No regulates JAK/STAT signaling for left-right asymmetry in the gut by promoting receptor endocytosis

Yi‐Ting Lai et al.Aug 20, 2022
ABSTRACT Many internal Drosophila organs show stereotypical left-right (LR) asymmetry, for which the underlying mechanisms remain elusive. Here, we identified an evolutionarily conserved ubiquitin-binding protein, AWP1/Doctor no (Drn), as a novel factor required for the LR asymmetry of the embryonic anterior gut in Drosophila . We showed that drn is essential in the circular visceral muscle cells of the midgut for JAK/STAT signaling, which contributes to the first known cue for anterior gut lateralization via LR-asymmetric nuclear rearrangement. Embryos homozygous for drn and lacking its maternal contribution showed phenotypes similar to that of depleted JAK/STAT signaling, suggesting that Drn is a general component of JAK/STAT signaling. The absence of Drn resulted in the specific accumulation of Domeless (Dome), the receptor of JAK/STAT signaling, in intracellular compartments. Thus, Drn is required for the endocytic trafficking of Dome, which is subsequently degraded in lysosomes. Our results suggest that the endocytosis of Dome is a critical step in activating JAK/STAT signaling. The roles of AWP1/Drn in activating JAK/STAT signaling and in LR-asymmetric development may be conserved in various organisms. Summary Statement Dr. No, a Drosophila ortholog of AWP1, activates JAK/STAT signaling via Dome receptor endocytosis in a crucial step for left-right asymmetry in the developing gut.
3
Citation1
0
Save
0

GnasR201C Induces Murine Pancreatic Cystic Neoplasms through Suppression of YAP1 Signaling and Transcriptional Reprogramming

Noboru Ideno et al.Apr 28, 2018
Background & Aims: Somatic 'hotspot' mutations of GNAS, which encodes for the alpha subunit of stimulatory G-protein, are present in ~60% of intraductal papillary mucinous neoplasms (IPMNs) of the pancreas. There are currently no cognate animal models that recapitulate the biology of mutant Gnas-induced IPMNs, and the underlying mechanisms that lead to the cystic pathway of neoplasia in the pancreas remain unknown. Methods: We generated p48-Cre; LSL-KrasG12D; Rosa26R-LSL-rtTA-TetO-GnasR201C mice (Kras; Gnas mice) where pancreas-specific GnasR201C expression was induced by doxycycline administration. In this model, mutant Kras is constitutively expressed, and control mice were produced through absence of doxycycline. Separate cohorts of mice were utilized for timed necropsies and for Kaplan-Meier survival analysis. Isogenic cell lines (with doxycycline inducible mutant Gnas expression) were propagated from the resulting pancreatic ductal adenocarcinoma (PDAC). Results: Co-expression of KrasG12D and GnasR201C resulted in the development of pancreatic cystic lesions resembling human IPMNs in 100% of mice, with higher grades of epithelial dysplasia observed over time. Approximately one-third of Kras; Gnas mice developed PDAC at a median of 38 weeks post doxycycline induction. GnasR201C did not accelerate oncogenic transformation with KrasG12D, but rather, reprogrammed Ras-induced neoplasms towards a well-differentiated phenotype. GnasR201C induction led to activation of the inhibitory Hippo kinase cascade and cytoplasmic sequestration of phosphorylated YAP1 protein, a phenomenon that was also observed in human IPMN with GNAS mutations. Conclusions: GNASR201C functions not as a traditional oncogene, but rather as an 'oncomodulator' of KRAS-mediated pancreatic neoplasia, through suppression of YAP1 and transcriptional reprogramming towards a differentiated (large ductal) phenotype.
0

Metabolic Reprogramming by Mutant GNAS Creates an Actionable Dependency in Intraductal Papillary Mucinous Neoplasms of the Pancreas

Yuki Makino et al.Mar 15, 2024
ABSTRACT Objective Oncogenic “hotspot” mutations of KRAS and GNAS are two major driver alterations in Intraductal Papillary Mucinous Neoplasms (IPMNs), which are bona fide precursors to pancreatic ductal adenocarcinoma. We previously reported that pancreas-specific Kras G12D and Gnas R201C co-expression in p48 Cre ; Kras LSL-G12D ; Rosa26 LSL-rtTA ; Tg (TetO- Gnas R201C ) mice (“ Kras;Gnas ” mice) caused development of cystic lesions recapitulating IPMNs. Here, we aim to unveil the consequences of mutant Gnas R201C expression on phenotype, transcriptomic profile, and genomic dependencies. Design We performed multimodal transcriptional profiling (bulk RNA sequencing, single cell RNA sequencing, and spatial transcriptomics) in the “ Kras;Gnas” autochthonous model and tumor-derived cell lines ( Kras;Gnas cells), where Gnas R201C expression is inducible. A genome-wide CRISPR/ Cas 9 screen was conducted to identify potential vulnerabilities in Kras G12D ;Gnas R201C co-expressing cells. Results Induction of Gnas R201C – and resulting G (s) alpha signaling – leads to the emergence of a gene signature of gastric (pyloric type) metaplasia in pancreatic neoplastic epithelial cells. CRISPR screening identified the synthetic essentiality of glycolysis-related genes Gpi1 and Slc2a1 in Kras G12D ; Gnas R201C co-expressing cells. Real-time metabolic analyses in Kras;Gnas cells and autochthonous Kras;Gnas model confirmed enhanced glycolysis upon Gnas R201C induction. Induction of Gnas R201C made Kras G12D expressing cells more dependent on glycolysis for their survival. Protein kinase A-dependent phosphorylation of the glycolytic intermediate enzyme PFKFB3 was a driver of increased glycolysis upon Gnas R201C induction. Conclusion Multiple orthogonal approaches demonstrate that Kras G12D and Gnas R201C co-expression results in a gene signature of gastric pyloric metaplasia and glycolytic dependency during IPMN pathogenesis. The observed metabolic reprogramming may provide a potential target for therapeutics and interception of IPMNs. SUMMARY What is already known on this topic Activating “hotspot” mutations of KRAS and GNAS are found in a majority of Intraductal Papillary Mucinous Neoplasms (IPMNs). Expression of mutant KRAS and GNAS drives development of IPMN-like cystic lesions in the murine pancreas that eventually progress to pancreatic ductal adenocarcinoma (PDAC). What this study adds Mutant GNAS and the resulting aberrant G (s) alpha signaling drives a transcriptional signature of gastric (pyloric type) metaplasia in IPMNs with mucin production. Aberrant G (s) alpha signaling enhances glycolysis via protein kinase A-dependent phosphorylation of the glycolytic enzyme PFKFB3. Enhanced glycolysis in KRAS;GNAS -mutated IPMN cells is validated via multiple orthogonal approaches in vitro and in vivo and represents an actionable metabolic vulnerability. How this study might affect research, practice or policy The present study provides mechanistic insight into how aberrant G (s) alpha signaling alters the biology of Kras -mutant pancreatic epithelial neoplasia through metaplastic and metabolic reprogramming. Targeting glycolysis in IPMNs may represent both a therapeutic avenue as well as an opportunity for intercepting progression to invasive cancer.