ZC
Zhe Chen
Author with expertise in Cryo-Electron Microscopy Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
17
(76% Open Access)
Cited by:
1,708
h-index:
46
/
i10-index:
82
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Role of Lipid Modifications in Targeting Proteins to Detergent-resistant Membrane Rafts

Karin Melkonian et al.Feb 1, 1999
Sphingolipid and cholesterol-rich Triton X-100-insoluble membrane fragments (detergent-resistant membranes, DRMs) containing lipids in a state similar to the liquid-ordered phase can be isolated from mammalian cells, and probably exist as discrete domains or rafts in intact membranes. We postulated that proteins with a high affinity for such an ordered lipid environment might be targeted to rafts. Saturated acyl chains should prefer an extended conformation that would fit well in rafts. In contrast, prenyl groups, which are as hydrophobic as acyl chains but have a branched and bulky structure, should be excluded from rafts. Here, we showed that at least half of the proteins in Madin-Darby canine kidney cell DRMs (other than cytoskeletal contaminants) could be labeled with [3H]palmitate. Association of influenza hemagglutinin with DRMs required all three of its palmitoylated Cys residues. Prenylated proteins, detected by [3H]mevalonate labeling or by blotting for Rap1, Rab5, Gbeta, or Ras, were excluded from DRMs. Rab5 and H-Ras each contain more than one lipid group, showing that hydrophobicity alone does not target multiply lipid-modified proteins to DRMs. Partitioning of covalently linked saturated acyl chains into liquid-ordered phase domains is likely to be an important mechanism for targeting proteins to DRMs.
0

Beam-induced motion of vitrified specimen on holey carbon film

Axel Brilot et al.Feb 16, 2012
The contrast observed in images of frozen-hydrated biological specimens prepared for electron cryo-microscopy falls significantly short of theoretical predictions. In addition to limits imposed by the current instrumentation, it is widely acknowledged that motion of the specimen during its exposure to the electron beam leads to significant blurring in the recorded images. We have studied the amount and direction of motion of virus particles suspended in thin vitrified ice layers across holes in perforated carbon films using exposure series. Our data show that the particle motion is correlated within patches of 0.3-0.5 μm, indicating that the whole ice layer is moving in a drum-like motion, with accompanying particle rotations of up to a few degrees. Support films with smaller holes, as well as lower electron dose rates tend to reduce beam-induced specimen motion, consistent with a mechanical effect. Finally, analysis of movies showing changes in the specimen during beam exposure show that the specimen moves significantly more at the start of an exposure than towards its end. We show how alignment and averaging of movie frames can be used to restore high-resolution detail in images affected by beam-induced motion.
0
Paper
Citation397
0
Save
0
0

Structural basis for Retriever-SNX17 assembly and endosomal sorting

Amika Singla et al.Nov 25, 2024
During endosomal recycling, Sorting Nexin 17 (SNX17) facilitates the transport of numerous membrane cargo proteins by tethering them to the Retriever complex. Despite its importance, the mechanisms underlying this interaction have remained elusive. Here, we provide biochemical, structural, cellular, and proteomic analyses of the SNX17-Retriever interaction. Our data reveal that SNX17 adopts an autoinhibited conformation in the basal state, with its FERM domain sequestering its C-terminal tail. The binding of cargo proteins to the FERM domain displaces the C-terminal tail through direct competition. The released tail engages with Retriever by binding to a highly conserved interface between its VPS35L and VPS26C subunits, as revealed by cryogenic electron microscopy (cryo-EM). Disrupting this interface impairs the Retriever-SNX17 interaction, subsequently affecting the recycling of SNX17-dependent cargoes and altering the composition of the plasma membrane proteome. Intriguingly, the SNX17-binding pocket on Retriever can be utilized by other ligands containing a consensus acidic C-terminal tail motif. Together, our findings uncover a mechanism underlying endosomal trafficking of critical cargo proteins and reveal how Retriever can potentially engage with other regulatory factors or be exploited by pathogens.
Load More