MM
Mathieu Morcrette
Author with expertise in Lithium-ion Battery Technology
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(0% Open Access)
Cited by:
1,646
h-index:
16
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures

Rezan Demir‐Cakan et al.Sep 1, 2011
Li-S rechargeable batteries are attractive for electric transportation because of their low cost, environmentally friendliness, and superior energy density. However, the Li-S system has yet to conquer the marketplace, owing to its drawbacks, namely, soluble polysulfide formation. To tackle this issue, we present here a strategy based on the use of a mesoporous chromium trimesate metal-organic framework (MOF) named MIL-100(Cr) as host material for sulfur impregnation. Electrodes containing sulfur impregnated within the pores of the MOF were found to show a marked increase in the capacity retention of Li-S cathodes. Complementary transmission electron microscopy and X-ray photoelectron spectroscopy measurements demonstrated the reversible capture and release of the polysulfides by the pores of MOF during cycling and evidenced a weak binding between the polysulphides and the oxygenated framework. Such an approach was generalized to other mesoporous oxide structures, such as mesoporous silica, for instance SBA-15, having the same positive effect as the MOF on the capacity retention of Li-S cells. Besides pore sizes, the surface activity of the mesoporous additives, as observed for the MOF, appears to also have a pronounced effect on enhancing the cycle performance. Increased knowledge about the interface between polysulfide species and oxide surfaces could lead to novel approaches in the design and fabrication of long cycle life S electrodes.
0

Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries

Jean‐Sébastien Bridel et al.Dec 2, 2009
Various Si/carbon/polymer composite electrodes were prepared to better understand the influence of the Si−polymer interactions on the stability of the Li−Si reaction and especially the superior performances of CMC-based (carboxy−methyl−cellulose) composites despite the large volume changes of the Si particles upon cycling. Via the modification of the composites formulation, the nature of the polymer, the nature and the amount of the substituting groups and the surface chemistry of the Si particles, together with the use of various characterization techniques (TEM, SEM, NMR−MAS, infrared spectroscopy, TGA, etc.) we could propose that the performances of the Si/Csp/CMC composite electrodes are nested in both the porous texture of the electrode and in the nature of the Si−polymer chemical bonding. A self-healing process of the rather strong Si−CMC hydrogen bonding which can accommodate textural stresses and can evolve during cycling is proposed to be critical for Si-based electrode performances. This better understanding leads to the design of Si-based electrodes with capacity retention reaching 1000 mAh/g of composite (i.e., full Si capacity) for at least 100 cycles and with a Coulombic efficiency close to 99.9% per cycle. Owing to these new aspects, we have now a deeper insight of the specific effects of the CMC binder, than could be successfully extended to other metals (Sn, Ge, Sb).
0

Insights into the Micro-Structure-Transport Relationships of the Fluoride-Ion Conductor t-BaSnF4 Synthesized by Spark Plasma Sintering

Briséïs Mercadier et al.Aug 7, 2024
The tetragonal ordered form of BaSnF4 is of particular interest, as its ionic conductivity is high enough to enable its uses as an electrolyte in all-solid-state fluoride-ion batteries. Despite several studies related to its synthesis, structure, and fluoride-ion diffusion mechanism, reported routes often yield impurities as well as unexplained variation in the unit-cell c-axis length. Here, we report on the single-phase synthesis of t-BaSnF4 via spark plasma sintering, a method that could be used to prepare bulk-type all-solid-state inorganic batteries in one step. By optimizing different parameters (temperature, setup features, etc.), we reached a high ionic conductivity of 5 × 10–3 S·cm–1 at 30 °C. In addition, we show that two main factors affect the ionic conductivity. First, on a microstructural scale, the preferential growth of crystallites along the c-axis results in a decrease of the ionic conductivity of resulting powders because of the two-dimensional (2D) fluoride-ion diffusion in this material. Second, on the atomic scale, the increase of the unit-cell c-axis length is concomitant with a decrease of the ionic conductivity. A combined neutron diffraction and 19F solid-state magic angle spinning (MAS) NMR study reveals that the observed increase of the unit-cell c-axis length is due to the partial occupancy of octahedral interstitial sites. NMR allows us to identify these interstitial sites (the F4 site) with distinct isotropic chemical shift values. Furthermore, variable-temperature 19F solid-state MAS NMR reveals that these F4-ions do not exchange with fluoride-ions (F1 and F3) that are responsible for the transport properties. Hence, the occupancy of these interstitial sites tends to lower the 2D fluoride-ion conductivity, and the unit-cell c-axis length can be used as a guideline to ensure the preparation of highly conductive samples provided that the microstructure is controlled. Overall, this study provides a novel route to prepare pure t-BaSnF4 while establishing a better understanding of the factors affecting its transport properties.