EA
Eric Achterberg
Author with expertise in Marine Biogeochemistry and Ecosystem Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
2,773
h-index:
76
/
i10-index:
284
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The GEOTRACES Intermediate Data Product 2017

Reiner Schlitzer et al.Jun 1, 2018
The GEOTRACES Intermediate Data Product 2017 (IDP2017) is the second publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2016. The IDP2017 includes data from the Atlantic, Pacific, Arctic, Southern and Indian oceans, with about twice the data volume of the previous IDP2014. For the first time, the IDP2017 contains data for a large suite of biogeochemical parameters as well as aerosol and rain data characterising atmospheric trace element and isotope (TEI) sources. The TEI data in the IDP2017 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at crossover stations. The IDP2017 consists of two parts: (1) a compilation of digital data for more than 450 TEIs as well as standard hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing an on-line atlas that includes more than 590 section plots and 130 animated 3D scenes. The digital data are provided in several formats, including ASCII, Excel spreadsheet, netCDF, and Ocean Data View collection. Users can download the full data packages or make their own custom selections with a new on-line data extraction service. In addition to the actual data values, the IDP2017 also contains data quality flags and 1-σ data error values where available. Quality flags and error values are useful for data filtering and for statistical analysis. Metadata about data originators, analytical methods and original publications related to the data are linked in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2017 as section plots and rotating 3D scenes. The basin-wide 3D scenes combine data from many cruises and provide quick overviews of large-scale tracer distributions. These 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of tracer plumes near ocean margins or along ridges. The IDP2017 is the result of a truly international effort involving 326 researchers from 25 countries. This publication provides the critical reference for unpublished data, as well as for studies that make use of a large cross-section of data from the IDP2017. This article is part of a special issue entitled: "Cycles of trace elements and isotopes in the ocean – GEOTRACES and beyond" - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González.
0
Paper
Citation336
0
Save
0

Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean

Chris Marsay et al.Jan 5, 2015
The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.
0
Paper
Citation311
0
Save
0

The relative contribution of fast and slow sinking particles to ocean carbon export

Jennifer Riley et al.Feb 6, 2012
Particulate organic carbon (POC) generated by primary production and exported to depth, is an important pathway for carbon transfer to the abyss, where it is stored over climatically significant timescales. These processes constitute the biological carbon pump. A spectrum of particulate sinking velocities exists throughout the water column, however numerical models often simplify this spectrum into suspended, fast and slow sinking particles. Observational studies suggest the spectrum of sinking speeds in the ocean is strongly bimodal with >85% POC flux contained within two pools with sinking speeds of <10 m day −1 and >350 m day −1 . We deployed a Marine Snow Catcher (MSC) to estimate the magnitudes of the suspended, fast and slow sinking pools and their fluxes at the Porcupine Abyssal Plain site (48°N, 16.5°W) in summer 2009. The POC concentrations and fluxes determined were 0.2 μ g C L −1 and 54 mg C m −2 day −1 for fast sinking particles, 5 μ g C L −1 and 92 mg C m −2 day −1 for slow sinking particles and 97 μ g C L −1 for suspended particles. Our flux estimates were comparable with radiochemical tracer methods and neutrally buoyant sediment traps. Our observations imply: (1) biomineralising protists, on occasion, act as nucleation points for aggregate formation and accelerate particle sinking; (2) fast sinking particles alone were sufficient to explain the abyssal POC flux; and (3) there is no evidence for ballasting of the slow sinking flux and the slow sinking particles were probably entirely remineralised in the twilight zone.
0
Paper
Citation211
0
Save
0

Assessing Aquatic Baseline Toxicity of Plastic-Associated Chemicals: Development and Validation of the Target Plastic Model

Deedar Nabi et al.Aug 9, 2024
We developed a Target Plastic Model (TPM) to estimate the critical plastic burden of organic toxicants in five types of plastics, namely, polydimethylsiloxane (PDMS), polyoxymethylene (POM), polyacrylate (PA), low-density polyethylene (LDPE), and polyurethane ester (PU), following the Target Lipid Model (TLM) framework. By substituting the lipid–water partition coefficient in the TLM with plastic–water partition coefficients to create TPM, we demonstrated that the biomimetic nature of these plastic phases allows for the calculation of critical plastic burdens of toxicants, similar to the notion of critical lipid burdens in TLM. Following this approach, the critical plastic burdens of baseline (n = 115), less-inert (n = 73), and reactive (n = 75) toxicants ranged from 0.17 to 51.33, 0.04 to 26.62, and 1.00 × 10–6 to 6.78 × 10–4 mmol/kg of plastic, respectively. Our study showed that PDMS, PA, POM, PE, and PU are similar to biomembranes in mimicking the passive exchange of chemicals with the water phase. Using the TPM, median lethal concentration (LC50) values for fish exposed to baseline toxicants were predicted, and the results agreed with experimental values, with RMSE ranging from 0.311 to 0.538 log unit. Similarly, for the same data set of baseline toxicants, other widely used models, including the TLM (RMSE: 0.32–0.34), ECOSAR (RMSE: 0.35), and the Abraham Solvation Model (ASM; RMSE: 0.31), demonstrated comparable agreement between experimental and predicted values. For less inert chemicals, predictions were within a factor of 5 of experimental values. Comparatively, ASM and ECOSAR showed predictions within a factor of 2 and 3, respectively. The TLM based on phospholipid had predictions within a factor of 3 and octanol within a factor of 4, indicating that the TPM's performance for less inert chemicals is comparable to these established models. Unlike these methods, the TPM requires only the knowledge of plastic bound concentration for a given plastic phase to calculate baseline toxic units, bypassing the need for extensive LC50 and plastic–water partition coefficient data, which are often limited for emerging chemicals. Taken together, the TPM can provide valuable insights into the toxicities of chemicals associated with environmental plastic phases, assisting in selecting the best polymeric phase for passive sampling and designing better passive dosing techniques for toxicity experiments.
Load More