ZY
Zi Yang
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
1
h-index:
10
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Accessible chromatin maps of inflammatory bowel disease intestine nominate cell-type mediators of genetic disease risk

Joseph Wayman et al.Feb 13, 2024
Inflammatory Bowel Disease (IBD) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies (GWAS) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor (TF) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei (sn)RNA-seq and chromatin accessibility (snATAC)-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.
1

Development of a ferritin-based nanoparticle vaccine against the SARS-CoV-2 Omicron variant

Wanbo Tai et al.Mar 14, 2022
Abstract A new SARS-CoV-2 variant named Omicron (B.1.1.529) discovered initially in South Africa has recently been proposed as a variant of concern (VOC) by the World Health Organization, because of its high transmissibility and resistance to current vaccines and therapeutic antibodies. Therefore, rapid development of vaccines against prevalent variants including Omicron is urgently needed for COVID-19 prevention. Here, we designed a self-assembling ferritin-based nanoparticle (FNP) vaccine against the SARS-CoV-2 Omicron variant. The purified Fc-RBD Omicron automatically formed a dimer depending on the nature of the Fc tag, thus assembling onto the nanoparticles by the Fc-protein A tag interaction (FNP-Fc-RBD Omicron ). The results of hACE2-transgenic mice immunization showed that SARS-CoV-2 Omicron RBD-specific IgG titer induced by FNP-Fc-RBDOmicron was much higher than that by Fc-RBD Omicron . Consistently, the sera showed a higher neutralizing activity against SARS-CoV-2 Omicron BA.1 and BA.2 in the FNP-Fc-RBD Omicron immunized mice, indicating that immunization of a self-assembling ferritin-based nanoparticle vaccine offers a robust humoral immune response against Omicron variants. This study offers a great potential for the quick response of the emerging SARS-CoV-2 variants and affords versatility to develop universal vaccines against other emerging and reemerging coronaviruses in the future.