AG
André Granier
Author with expertise in Global Forest Drought Response and Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(56% Open Access)
Cited by:
18,817
h-index:
65
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm

Markus Reichstein et al.Jul 25, 2005
Abstract This paper discusses the advantages and disadvantages of the different methods that separate net ecosystem exchange (NEE) into its major components, gross ecosystem carbon uptake (GEP) and ecosystem respiration ( R eco ). In particular, we analyse the effect of the extrapolation of night‐time values of ecosystem respiration into the daytime; this is usually done with a temperature response function that is derived from long‐term data sets. For this analysis, we used 16 one‐year‐long data sets of carbon dioxide exchange measurements from European and US‐American eddy covariance networks. These sites span from the boreal to Mediterranean climates, and include deciduous and evergreen forest, scrubland and crop ecosystems. We show that the temperature sensitivity of R eco , derived from long‐term (annual) data sets, does not reflect the short‐term temperature sensitivity that is effective when extrapolating from night‐ to daytime. Specifically, in summer active ecosystems the long‐term temperature sensitivity exceeds the short‐term sensitivity. Thus, in those ecosystems, the application of a long‐term temperature sensitivity to the extrapolation of respiration from night to day leads to a systematic overestimation of ecosystem respiration from half‐hourly to annual time‐scales, which can reach >25% for an annual budget and which consequently affects estimates of GEP. Conversely, in summer passive (Mediterranean) ecosystems, the long‐term temperature sensitivity is lower than the short‐term temperature sensitivity resulting in underestimation of annual sums of respiration. We introduce a new generic algorithm that derives a short‐term temperature sensitivity of R eco from eddy covariance data that applies this to the extrapolation from night‐ to daytime, and that further performs a filling of data gaps that exploits both, the covariance between fluxes and meteorological drivers and the temporal structure of the fluxes. While this algorithm should give less biased estimates of GEP and R eco , we discuss the remaining biases and recommend that eddy covariance measurements are still backed by ancillary flux measurements that can reduce the uncertainties inherent in the eddy covariance data.
0
Paper
Citation3,556
0
Save
0

Gap filling strategies for defensible annual sums of net ecosystem exchange

Eva Falge et al.Mar 1, 2001
Heightened awareness of global change issues within both science and political communities has increased interest in using the global network of eddy covariance flux towers to more fully understand the impacts of natural and anthropogenic phenomena on the global carbon balance. Comparisons of net ecosystem exchange (FNEE) responses are being made among biome types, phenology patterns, and stress conditions. The comparisons are usually performed on annual sums of FNEE; however, the average data coverage during a year is only 65%. Therefore, robust and consistent gap filling methods are required. We review several methods of gap filling and apply them to data sets available from the EUROFLUX and AmeriFlux databases. The methods are based on mean diurnal variation (MDV), look-up tables (LookUp), and nonlinear regressions (Regr.), and the impact of different gap filling methods on the annual sum of FNEE is investigated. The difference between annual FNEE filled by MDV compared to FNEE filled by Regr. ranged from −45 to +200 g C m−2 per year (MDV−Regr.). Comparing LookUp and Regr. methods resulted in a difference (LookUp−Regr.) ranging from −30 to +150 g C m−2 per year. We also investigated the impact of replacing measurements at night, when turbulent mixing is insufficient. The nighttime correction for low friction velocities (u∗) shifted annual FNEE on average by +77 g C m−2 per year, but in certain cases as much as +185 g C m−2 per year. Our results emphasize the need to standardize gap filling-methods for improving the comparability of flux data products from regional and global flux networks.
0
Paper
Citation1,847
0
Save
0

Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

B. Law et al.Oct 28, 2002
The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables. FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem exchange, the net of photosynthesis and respiration) was greater under diffuse than under direct radiation conditions, perhaps because of a more efficient distribution of non-saturating light conditions for photosynthesis, lower vapor pressure deficit limitation to photosynthesis, and lower respiration associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes, except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes=3.4 g CO2/kg H2O for grasslands, 3.2 for deciduous broadleaf forests, 3.1 for crops, 2.4 for evergreen conifers, and 1.5 for tundra vegetation). The ratio of annual ecosystem respiration to gross photosynthesis averaged 0.83, with lower values for grasslands, presumably because of less investment in respiring plant tissue compared with forests. Ecosystem respiration was weakly correlated with mean annual temperature across biomes, in spite of within site sensitivity over shorter temporal scales. Mean annual temperature and site water balance explained much of the variation in gross photosynthesis. Water availability limits leaf area index over the long-term, and inter-annual climate variability can limit carbon uptake below the potential of the leaf area present.
0
Paper
Citation1,304
0
Save
0

Productivity overshadows temperature in determining soil and ecosystem respiration across European forests

Ivan Janssens et al.Mar 1, 2001
Summary This paper presents CO 2 flux data from 18 forest ecosystems, studied in the European Union funded EUROFLUX project. Overall, mean annual gross primary productivity (GPP, the total amount of carbon (C) fixed during photosynthesis) of these forests was 1380 ± 330 gC m −2 y −1 (mean ±SD). On average, 80% of GPP was respired by autotrophs and heterotrophs and released back into the atmosphere (total ecosystem respiration, TER = 1100 ± 260 gC m −2 y −1 ). Mean annual soil respiration (SR) was 760 ± 340 gC m −2 y −1 (55% of GPP and 69% of TER). Among the investigated forests, large differences were observed in annual SR and TER that were not correlated with mean annual temperature. However, a significant correlation was observed between annual SR and TER and GPP among the relatively undisturbed forests. On the assumption that (i) root respiration is constrained by the allocation of photosynthates to the roots, which is coupled to productivity, and that (ii) the largest fraction of heterotrophic soil respiration originates from decomposition of young organic matter (leaves, fine roots), whose availability also depends on primary productivity, it is hypothesized that differences in SR among forests are likely to depend more on productivity than on temperature. At sites where soil disturbance has occurred (e.g. ploughing, drainage), soil espiration was a larger component of the ecosystem C budget and deviated from the relationship between annual SR (and TER) and GPP observed among the less‐disturbed forests. At one particular forest, carbon losses from the soil were so large, that in some years the site became a net source of carbon to the atmosphere. Excluding the disturbed sites from the present analysis reduced mean SR to 660 ± 290 gC m −2 y −1 , representing 49% of GPP and 63% of TER in the relatively undisturbed forest ecosystems.
0
Citation1,002
0
Save
0

CO2 balance of boreal, temperate, and tropical forests derived from a global database

Sebastiaan Luyssaert et al.Aug 21, 2007
Abstract Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome‐specific carbon budgets; to re‐examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO 2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 °C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO 2 balance required the introduction of substantial biome‐specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non‐CO 2 carbon fluxes are not presently being adequately accounted for.
0
Paper
Citation955
0
Save
0

Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements

Eva Falge et al.Oct 28, 2002
Differences in the seasonal pattern of assimilatory and respiratory processes are responsible for divergences in seasonal net carbon exchange among ecosystems. Using FLUXNET data (http://www.eosdis.ornl.gov/FLUXNET) we have analyzed seasonal patterns of gross primary productivity (FGPP), and ecosystem respiration (FRE) of boreal and temperate, deciduous and coniferous forests, Mediterranean evergreen systems, a rainforest, temperate grasslands, and C3 and C4 crops. Based on generalized seasonal patterns classifications of ecosystems into vegetation functional types can be evaluated for use in global productivity and climate change models. The results of this study contribute to our understanding of respiratory costs of assimilated carbon in various ecosystems. Seasonal variability of FGPP and FRE of the investigated sites increased in the order tropicaltemperate conifers, C3 grassland and crops (5.7–6.9gCm−2perday)>boreal conifers (4.6 g C m−2 per day). Annual FGPP and net ecosystem productivity (FNEP) decreased across climate zones in the order tropical>temperate>boreal. However, the decrease in FNEP with latitude was greater than the decrease in FGPP, indicating a larger contribution of respiratory (especially heterotrophic) processes in boreal systems.
0
Paper
Citation712
0
Save
0

Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003

André Granier et al.Jan 26, 2007
The drought of 2003 was exceptionally severe in many regions of Europe, both in duration and in intensity. In some areas, especially in Germany and France, it was the strongest drought for the last 50 years, lasting for more than 6 months. We used continuous carbon and water flux measurements at 12 European monitoring sites covering various forest ecosystem types and a large climatic range in order to characterise the consequences of this drought on ecosystems functioning. As soil water content in the root zone was only monitored in a few sites, a daily water balance model was implemented at each stand to estimate the water balance terms: trees and understorey transpiration, rainfall interception, throughfall, drainage in the different soil layers and soil water content. This model calculated the onset date, duration and intensity of the soil water shortage (called water stress) using measured climate and site properties: leaf area index and phenology that both determine tree transpiration and rainfall interception, soil characteristics and root distribution, both influencing water absorption and drainage. At sites where soil water content was measured, we observed a good agreement between measured and modelled soil water content. Our analysis showed a wide spatial distribution of drought stress over Europe, with a maximum intensity within a large band extending from Portugal to NE Germany. Vapour fluxes in all the investigated sites were reduced by drought, due to stomatal closure, when the relative extractable water in soil (REW) dropped below ca. 0.4. Rainfall events during the drought, however, typically induced rapid restoration of vapour fluxes. Similar to the water vapour fluxes, the net ecosystem production decreased with increasing water stress at all the sites. Both gross primary production (GPP) and total ecosystem respiration (TER) also decreased when REW dropped below 0.4 and 0.2, for GPP and TER, respectively. A higher sensitivity to drought was found in the beech, and surprisingly, in the broadleaved Mediterranean forests; the coniferous stands (spruce and pine) appeared to be less drought-sensitive. The effect of drought on tree growth was also large at the three sites where the annual tree growth was measured. Especially in beech, this growth reduction was more pronounced in the year following the drought (2004). Such lag effects on tree growth should be considered an important feature in forest ecosystems, which may enhance vulnerability to more frequent climate extremes.
0
Paper
Citation585
0
Save
0

Gap filling strategies for long term energy flux data sets

Eva Falge et al.Mar 1, 2001
At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75% for latent heat (λE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods on the annual sum of λE and H is investigated. The difference between annual λE filled by MDV and λE filled by LookUp ranged from −120 to 210 MJ m−2 per year, i.e. −48 to +86 mm per year, or −13 to +39% of the annual sum. For annual sums of H differences between −140 and +140 MJ m−2 per year or −12 to +19% of the annual sum were found.
0
Paper
Citation578
0
Save
Load More