MS
Martin Schultz
Author with expertise in Atmospheric Aerosols and their Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
33
(91% Open Access)
Cited by:
24,090
h-index:
72
/
i10-index:
144
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bounding the role of black carbon in the climate system: A scientific assessment

Tami Bond et al.Apr 22, 2013
Abstract Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black‐carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom‐up inventory methods are 7500 Gg yr −1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial‐era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m −2 with 90% uncertainty bounds of (+0.08, +1.27) W m −2 . Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m −2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial‐era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m −2 with 90% uncertainty bounds of +0.17 to +2.1 W m −2 . Thus, there is a very high probability that black carbon emissions, independent of co‐emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m −2 , is the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate. Climate forcings from co‐emitted species are estimated and used in the framework described herein. When the principal effects of short‐lived co‐emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy‐related sources (fossil fuel and biofuel) have an industrial‐era climate forcing of +0.22 (−0.50 to +1.08) W m −2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short‐lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial‐era climate forcing by all short‐lived species from black‐carbon‐rich sources becomes slightly negative (−0.06 W m −2 with 90% uncertainty bounds of −1.45 to +1.29 W m −2 ). The uncertainties in net climate forcing from black‐carbon‐rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co‐emitted organic carbon. In prioritizing potential black‐carbon mitigation actions, non‐science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near‐term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black‐carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.
0
Paper
Citation5,891
0
Save
0

Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation

I. Bey et al.Oct 1, 2001
We present a first description and evaluation of GEOS‐CHEM, a global threedimensional (3‐D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1‐year simulation of tropospheric ozone‐NO x ‐hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO 3 in the remote troposphere are overestimated typically by a factor of 2–3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas‐aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 +/− 0.8 years, and simulates H 2 O 2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are ∼20% higher than in our previous global 3‐D model which included an UV‐absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10–30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source from the ocean may be implicated.
0
Paper
Citation2,686
0
Save
0

Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application

Jean‐François Lamarque et al.Aug 3, 2010
Abstract. We present and discuss a new dataset of gridded emissions covering the historical period (1850–2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report (AR5). Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors are used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, is then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Simulations from two chemistry-climate models are used to test the ability of the emission dataset described here to capture long-term changes in atmospheric ozone, carbon monoxide and aerosol distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations indicate that the concentration of carbon monoxide is underestimated at the Mace Head station; however, the long-term trend over the limited observational period seems to be reasonably well captured. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates and observations.
0
Paper
Citation2,267
0
Save
0

Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation

Frank Dentener et al.Oct 27, 2006
We use 23 atmospheric chemistry transport models to calculate current and future (2030) deposition of reactive nitrogen (NO y , NH x ) and sulfate (SO x ) to land and ocean surfaces. The models are driven by three emission scenarios: (1) current air quality legislation (CLE); (2) an optimistic case of the maximum emissions reductions currently technologically feasible (MFR); and (3) the contrasting pessimistic IPCC SRES A2 scenario. An extensive evaluation of the present‐day deposition using nearly all information on wet deposition available worldwide shows a good agreement with observations in Europe and North America, where 60–70% of the model‐calculated wet deposition rates agree to within ±50% with quality‐controlled measurements. Models systematically overestimate NH x deposition in South Asia, and underestimate NO y deposition in East Asia. We show that there are substantial differences among models for the removal mechanisms of NO y , NH x , and SO x , leading to ±1 σ variance in total deposition fluxes of about 30% in the anthropogenic emissions regions, and up to a factor of 2 outside. In all cases the mean model constructed from the ensemble calculations is among the best when comparing to measurements. Currently, 36–51% of all NO y , NH x , and SO x is deposited over the ocean, and 50–80% of the fraction of deposition on land falls on natural (nonagricultural) vegetation. Currently, 11% of the world's natural vegetation receives nitrogen deposition in excess of the “critical load” threshold of 1000 mg(N) m −2 yr −1 . The regions most affected are the United States (20% of vegetation), western Europe (30%), eastern Europe (80%), South Asia (60%), East Asia (40%), southeast Asia (30%), and Japan (50%). Future deposition fluxes are mainly driven by changes in emissions, and less importantly by changes in atmospheric chemistry and climate. The global fraction of vegetation exposed to nitrogen loads in excess of 1000 mg(N) m −2 yr −1 increases globally to 17% for CLE and 25% for A2. In MFR, the reductions in NO y are offset by further increases for NH x deposition. The regions most affected by exceedingly high nitrogen loads for CLE and A2 are Europe and Asia, but also parts of Africa.
0
Paper
Citation1,276
0
Save
0

A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2

Larry Horowitz et al.Dec 23, 2003
We have developed a global three‐dimensional chemical transport model called Model of Ozone and Related Chemical Tracers (MOZART), version 2. This model, which will be made available to the community, is built on the framework of the National Center for Atmospheric Research (NCAR) Model of Atmospheric Transport and Chemistry (MATCH) and can easily be driven with various meteorological inputs and model resolutions. In this work, we describe the standard configuration of the model, in which the model is driven by meteorological inputs every 3 hours from the middle atmosphere version of the NCAR Community Climate Model (MACCM3) and uses a 20‐min time step and a horizontal resolution of 2.8° latitude × 2.8° longitude with 34 vertical levels extending up to approximately 40 km. The model includes a detailed chemistry scheme for tropospheric ozone, nitrogen oxides, and hydrocarbon chemistry, with 63 chemical species. Tracer advection is performed using a flux‐form semi‐Lagrangian scheme with a pressure fixer. Subgrid‐scale convective and boundary layer parameterizations are included in the model. Surface emissions include sources from fossil fuel combustion, biofuel and biomass burning, biogenic and soil emissions, and oceanic emissions. Parameterizations of dry and wet deposition are included. Stratospheric concentrations of several long‐lived species (including ozone) are constrained by relaxation toward climatological values. The distribution of tropospheric ozone is well simulated in the model, including seasonality and horizontal and vertical gradients. However, the model tends to overestimate ozone near the tropopause at high northern latitudes. Concentrations of nitrogen oxides (NO x ) and nitric acid (HNO 3 ) agree well with observed values, but peroxyacetylnitrate (PAN) is overestimated by the model in the upper troposphere at several locations. Carbon monoxide (CO) is simulated well at most locations, but the seasonal cycle is underestimated at some sites in the Northern Hemisphere. We find that in situ photochemical production and loss dominate the tropospheric ozone budget, over input from the stratosphere and dry deposition. Approximately 75% of the tropospheric production and loss of ozone occurs within the tropics, with large net production in the tropical upper troposphere. Tropospheric production and loss of ozone are three to four times greater in the northern extratropics than the southern extratropics. The global sources of CO consist of photochemical production (55%) and direct emissions (45%). The tropics dominate the chemistry of CO, accounting for about 75% of the tropospheric production and loss. The global budgets of tropospheric ozone and CO are generally consistent with the range found in recent studies. The lifetime of methane (9.5 years) and methylchloroform (5.7 years) versus oxidation by tropospheric hydroxyl radical (OH), two useful measures of the global abundance of OH, agree well with recent estimates. Concentrations of nonmethane hydrocarbons and oxygenated intermediates (carbonyls and peroxides) generally agree well with observations.
0
Paper
Citation1,049
0
Save
0

Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period

Claire Granier et al.Aug 8, 2011
Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980–2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50–80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned.
0
Paper
Citation871
0
Save
0

Severe Surface Ozone Pollution in China: A Global Perspective

Xiao Lu et al.Jul 26, 2018
The nationwide extent of surface ozone pollution in China and its comparison to the global ozone distribution have not been recognized because of the scarcity of Chinese monitoring sites before 2012. Here we address this issue by using the latest 5 year (2013–2017) surface ozone measurements from the Chinese monitoring network, combined with the recent Tropospheric Ozone Assessment Report (TOAR) database for other industrialized regions such as Japan, South Korea, Europe, and the United States (JKEU). We use various human health and vegetation exposure metrics. We find that although the median ozone values are comparable between Chinese and JKEU cities, the magnitude and frequency of high-ozone events are much larger in China. The national warm-season (April–September) fourth highest daily maximum 8 h average (4MDA8) ozone level (86.0 ppb) and the number of days with MDA8 values of >70 ppb (NDGT70, 29.7 days) in China are 6.3–30% (range of regional mean differences) and 93–575% higher, respectively, than the JKEU regional averages. Health exposure metrics such as warm-season mean MDA8 and annual SOMO35 (sum of ozone means over 35 ppb) are 6.3–16 and 25–95% higher in China, respectively. We also find an increase in the surface ozone level over China in 2016 and 2017 relative to 2013 and 2014. Our results show that on the regional scale the exposure of humans and vegetation to ozone is greater in China than in other developed regions of the world with comprehensive ozone monitoring.
0
Paper
Citation843
0
Save
0

Multimodel estimates of intercontinental source‐receptor relationships for ozone pollution

Arlene Fiore et al.Feb 16, 2009
Understanding the surface O 3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O 3 ) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O 3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O 3 precursors, NO x , NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O 3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O 3 responses to NO x , CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental‐scale “import sensitivity” as the ratio of the O 3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O 3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O 3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O 3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8‐h average O 3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O 3 of about 0.1 ppb a −1 , at the low end of the 0.1–0.5 ppb a −1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O 3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NO x , NMVOC, and CO emissions from the foreign source region.
0
Paper
Citation563
0
Save
0

Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation

Audrey Gaudel et al.Jan 1, 2018
The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60°N–60°S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest.
0
Paper
Citation556
0
Save
Load More