YW
Yunpeng Wang
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(57% Open Access)
Cited by:
1,994
h-index:
49
/
i10-index:
114
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Analysis of five chronic inflammatory diseases identifies 27 new associations and highlights disease-specific patterns at shared loci

David Ellinghaus et al.Mar 14, 2016
David Ellinghaus and colleagues report a combined association analysis of five chronic inflammatory diseases. They identify 27 new associations and highlight disease-specific association patterns at shared susceptibility loci. We simultaneously investigated the genetic landscape of ankylosing spondylitis, Crohn's disease, psoriasis, primary sclerosing cholangitis and ulcerative colitis to investigate pleiotropy and the relationship between these clinically related diseases. Using high-density genotype data from more than 86,000 individuals of European ancestry, we identified 244 independent multidisease signals, including 27 new genome-wide significant susceptibility loci and 3 unreported shared risk loci. Complex pleiotropy was supported when contrasting multidisease signals with expression data sets from human, rat and mouse together with epigenetic and expressed enhancer profiles. The comorbidities among the five immune diseases were best explained by biological pleiotropy rather than heterogeneity (a subgroup of cases genetically identical to those with another disease, possibly owing to diagnostic misclassification, molecular subtypes or excessive comorbidity). In particular, the strong comorbidity between primary sclerosing cholangitis and inflammatory bowel disease is likely the result of a unique disease, which is genetically distinct from classical inflammatory bowel disease phenotypes.
0
Citation658
0
Save
0

Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

Min‐Tzu Lo et al.Dec 5, 2016
Chi-Hua Chen and colleagues report a GWAS for five personality traits and identify four loci associated with extraversion and two associated with neuroticism at genome-wide significance. They find that the five personality traits are genetically correlated and identify genetic correlations between personality traits and psychiatric disorders. Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit–hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
0
Citation405
0
Save
0

Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score

Rahul Desikan et al.Mar 21, 2017
Background Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance. Although genetic studies have identified AD-associated SNPs in APOE and other genes, genetic information has not been integrated into an epidemiological framework for risk prediction. Methods and findings Using genotype data from 17,008 AD cases and 37,154 controls from the International Genomics of Alzheimer’s Project (IGAP Stage 1), we identified AD-associated SNPs (at p < 10−5). We then integrated these AD-associated SNPs into a Cox proportional hazard model using genotype data from a subset of 6,409 AD patients and 9,386 older controls from Phase 1 of the Alzheimer’s Disease Genetics Consortium (ADGC), providing a polygenic hazard score (PHS) for each participant. By combining population-based incidence rates and the genotype-derived PHS for each individual, we derived estimates of instantaneous risk for developing AD, based on genotype and age, and tested replication in multiple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer’s Disease Center [NIA ADC], and Alzheimer’s Disease Neuroimaging Initiative [ADNI], total n = 20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile developed AD at a considerably lower age and had the highest yearly AD incidence rate. Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than 10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62–4.24, p = 1.0 × 10−22). In independent cohorts, the PHS strongly predicted empirical age of AD onset (ADGC Phase 2, r = 0.90, p = 1.1 × 10−26) and longitudinal progression from normal aging to AD (NIA ADC, Cochran–Armitage trend test, p = 1.5 × 10−10), and was associated with neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10−6, and Consortium to Establish a Registry for Alzheimer’s Disease score for neuritic plaques, p = 6.8 × 10−6) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the entorhinal cortex, p = 6.3 × 10−6, and hippocampus, p = 7.9 × 10−5). Additional prospective validation of these results in non-US, non-white, and prospective community-based cohorts is necessary before clinical use. Conclusions We have developed a PHS for quantifying individual differences in age-specific genetic risk for AD. Within the cohorts studied here, polygenic architecture plays an important role in modifying AD risk beyond APOE. With thorough validation, quantification of inherited genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in therapeutic trials.
0
Citation355
0
Save
0

Genome-wide Pleiotropy Between Parkinson Disease and Autoimmune Diseases

Aree Witoelar et al.Jul 1, 2017
Recent genome-wide association studies (GWAS) and pathway analyses supported long-standing observations of an association between immune-mediated diseases and Parkinson disease (PD). The post-GWAS era provides an opportunity for cross-phenotype analyses between different complex phenotypes.To test the hypothesis that there are common genetic risk variants conveying risk of both PD and autoimmune diseases (ie, pleiotropy) and to identify new shared genetic variants and their pathways by applying a novel statistical framework in a genome-wide approach.Using the conjunction false discovery rate method, this study analyzed GWAS data from a selection of archetypal autoimmune diseases among 138 511 individuals of European ancestry and systemically investigated pleiotropy between PD and type 1 diabetes, Crohn disease, ulcerative colitis, rheumatoid arthritis, celiac disease, psoriasis, and multiple sclerosis. NeuroX data (6927 PD cases and 6108 controls) were used for replication. The study investigated the biological correlation between the top loci through protein-protein interaction and changes in the gene expression and methylation levels. The dates of the analysis were June 10, 2015, to March 4, 2017.The primary outcome was a list of novel loci and their pathways involved in PD and autoimmune diseases.Genome-wide conjunctional analysis identified 17 novel loci at false discovery rate less than 0.05 with overlap between PD and autoimmune diseases, including known PD loci adjacent to GAK, HLA-DRB5, LRRK2, and MAPT for rheumatoid arthritis, ulcerative colitis and Crohn disease. Replication confirmed the involvement of HLA, LRRK2, MAPT, TRIM10, and SETD1A in PD. Among the novel genes discovered, WNT3, KANSL1, CRHR1, BOLA2, and GUCY1A3 are within a protein-protein interaction network with known PD genes. A subset of novel loci was significantly associated with changes in methylation or expression levels of adjacent genes.The study findings provide novel mechanistic insights into PD and autoimmune diseases and identify a common genetic pathway between these phenotypes. The results may have implications for future therapeutic trials involving anti-inflammatory agents.
0
Citation285
0
Save
0

Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation

Oleksandr Frei et al.Dec 27, 2017
ABSTRACT Accumulating evidence from genome wide association studies (GWAS) suggests an abundance of shared genetic influences among complex human traits and disorders, such as mental disorders. While current cross-trait analytical methods focus on genetic correlation between traits, we developed a novel statistical tool (MiXeR), which quantifies polygenic overlap independent of genetic correlation, using summary statistics from GWAS. MiXeR results can be presented as a Venn diagram of unique and shared polygenic components across traits. At 90% of SNP-heritability explained for each phenotype, MiXeR estimates that more than 9K variants causally influence schizophrenia, 7K influence bipolar disorder, and out of those variants 6.9K are shared between these two disorders, which have high genetic correlation. Further, MiXeR uncovers extensive polygenic overlap between schizophrenia and educational attainment. Despite a genetic correlation close to zero, these traits share more than 9K causal variants, while 3K additional variants only influence educational attainment. By considering the polygenicity, heritability and discoverability of complex phenotypes, MiXeR provides a more complete quantification of shared genetic architecture than offered by other available tools.
0
Citation3
0
Save
191

Sleep duration and brain structure – phenotypic associations and genotypic covariance

Anders Fjell et al.Feb 17, 2022
Abstract The question of how much sleep is best for the brain attracts scientific and public interest, and there is concern that insuficient sleep leads to poorer brain health. However, it is unknown how much sleep is sufficient and how much is too much. We analyzed 51,295 brain magnetic resonnance images from 47,039 participants, and calculated the self-reported sleep duration associated with the largest regional volumes and smallest ventricles relative to intracranial volume (ICV) and thickest cortex. 6.8 hours of sleep was associated with the most favorable brain outcome overall. Critical values, defined by 95% confidence intervals, were 5.7 and 7.9 hours. There was regional variation, with for instance the hippocampus showing largest volume at 6.3 hours. Moderately long sleep (> 8 hours) was more strongly associated with smaller relative volumes, thinner cortex and larger ventricles than even very short sleep (< 5 hours), but effect sizes were modest. People with larger ICV reported longer sleep (7.5 hours), so not correcting for ICV yielded longer durations associated with maximal volume. Controlling for socioeconomic status, body mass index and depression symptoms did not alter the associations. Genetic analyses showed that genes related to longer sleep in short sleepers were related to shorter sleep in long sleepers. This may indicate a genetically controlled homeostatic regulation of sleep duration. Mendelian randomization analyses did not suggest sleep duration to have a causal impact on brain structure in the analyzed datasets. The findings challenge the notion that habitual short sleep is negatively related to brain structure. Significance statement According to consensus recommendations, adults should sleep between 7 and 9 hours to optimize their health. We found that sleeping less than the recommended amount was associated with greater regional brain volumes relative to intracranial volume, and very short sleep was only weakly related to smaller volumes. Genetic analyses did not show causal effects of sleep duration on brain structure. Taken together, the results suggest that habitual short sleep is not an important contributor to lower brain volumes in adults on a group level, and that large individual dfferences in sleep need likely exist.
191
Citation2
0
Save
37

Tracing the development and lifespan change of population-level structural asymmetry in the cerebral cortex

James Roe et al.Nov 25, 2021
Abstract Cortical asymmetry is a ubiquitous feature of brain organization that is subtly altered in some neurodevelopmental disorders, yet we lack knowledge of how its development proceeds across life in health. Achieving consensus on the precise cortical asymmetries in humans is necessary to uncover the genetic and later influences that shape them, such as age. Here, we delineate population-level asymmetry in cortical thickness and surface area vertex-wise in 7 datasets and chart asymmetry trajectories longitudinally across life (4-89 years; observations = 3937; 70% longitudinal). We find replicable asymmetry interrelationships, heritability maps, and test asymmetry associations in large-scale data. Cortical asymmetry was robust across datasets. Whereas areal asymmetry is predominantly stable across life, thickness asymmetry grows in childhood and peaks in early adulthood. Areal asymmetry correlates phenotypically and genetically in specific regions, and is low-moderately heritable (max h 2 SNP ∼19%). In contrast, thickness asymmetry is globally interrelated across the cortex in a pattern suggesting highly left-lateralized individuals tend towards left-lateralization also in population-level right-asymmetric regions (and vice versa), and exhibits low or absent heritability. We find less areal asymmetry in the most consistently lateralized region in humans associates with subtly lower cognitive ability, and confirm small handedness and sex effects. Results suggest areal asymmetry is developmentally stable and arises in early life through genetic but mainly subject-specific stochastic effects, whereas childhood developmental growth shapes thickness asymmetry and may lead to directional variability of global thickness lateralization in the population.
Load More