HJ
Hans‐Georg Joost
Author with expertise in Effects of Ketogenic Diet on Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(88% Open Access)
Cited by:
3,737
h-index:
73
/
i10-index:
234
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach

Anna Floegel et al.Oct 6, 2012
+15
Z
N
A
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
0

Novel biomarkers for pre‐diabetes identified by metabolomics

Rui Wang‐Sattler et al.Jan 1, 2012
+40
C
Z
R
Article25 September 2012Open Access Novel biomarkers for pre-diabetes identified by metabolomics Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Author Information Rui Wang-Sattler 1,‡, Zhonghao Yu1,‡, Christian Herder2,‡, Ana C Messias3,‡, Anna Floegel4, Ying He5,6, Katharina Heim7, Monica Campillos8, Christina Holzapfel1,9, Barbara Thorand10, Harald Grallert1, Tao Xu1, Erik Bader1, Cornelia Huth10, Kirstin Mittelstrass1, Angela Döring11, Christa Meisinger10, Christian Gieger12, Cornelia Prehn13, Werner Roemisch-Margl8, Maren Carstensen2, Lu Xie5, Hisami Yamanaka-Okumura14, Guihong Xing15, Uta Ceglarek16, Joachim Thiery16, Guido Giani17, Heiko Lickert18, Xu Lin19, Yixue Li5,6, Heiner Boeing4, Hans-Georg Joost4, Martin Hrabé de Angelis13,20, Wolfgang Rathmann17, Karsten Suhre8,21,22, Holger Prokisch7, Annette Peters10, Thomas Meitinger7,23, Michael Roden2,24, H-Erich Wichmann11,25, Tobias Pischon4,26, Jerzy Adamski13,20 and Thomas Illig1,27 1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 2German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 3Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany 4Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany 5Shanghai Center for Bioinformation Technology, Shanghai, China 6Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 7Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany 8Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany 9Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany 10Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany 11Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany 12Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 13Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany 14Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan 15Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China 16Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany 17German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 18Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany 19Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 20Chair of Experimental Genetics, Technische Universität München, Munich, Germany 21Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany 22Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar 23Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany 24Klinikum rechts der Isar, Technische Universität München, Munich, Germany 25Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany 26Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany 27Hannover Unified Biobank, Hannover Medical School, Hannover, Germany ‡These authors contributed equally to this work *Corresponding author. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany. Tel.:+49 89 3187 3978; Fax:+49 89 3187 2428; E-mail: [email protected] Molecular Systems Biology (2012)8:615https://doi.org/10.1038/msb.2012.43 PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D. Synopsis A targeted metabolomics approach was used to identify candidate biomarkers of pre-diabetes. The relevance of the identified metabolites is further corroborated with a protein-metabolite interaction network and gene expression data. Three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine C2) were found with significantly altered levels in pre-diabetic individuals compared with normal controls. Lower levels of glycine and LPC (18:2) were found to predict risks for pre-diabetes and type 2 diabetes (T2D). Seven T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) are functionally associated with the three identified metabolites. The unique combination of methodologies, including prospective population-based and nested case–control, as well as cross-sectional studies, was essential for the identification of the reported biomarkers. Introduction Type 2 diabetes (T2D) is defined by increased blood glucose levels due to pancreatic β-cell dysfunction and insulin resistance without evidence for specific causes, such as autoimmune destruction of pancreatic β-cells (Krebs et al, 2002; Stumvoll et al, 2005; Muoio and Newgard, 2008). A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)) with only slightly elevated blood glucose levels may precede T2D for years (McGarry, 2002; Tabak et al, 2012). The development of diabetes in pre-diabetic individuals can be prevented or delayed by dietary changes and increased physical activity (Tuomilehto et al, 2001; Knowler et al, 2002). However, no specific biomarkers that enable prevention have been reported. Metabolomics studies allow metabolites involved in disease mechanisms to be discovered by monitoring metabolite level changes in predisposed individuals compared with healthy ones (Shaham et al, 2008; Newgard et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011; Rhee et al, 2011; Wang et al, 2011; Cheng et al, 2012; Goek et al, 2012). Altered metabolite levels may serve as diagnostic biomarkers and enable preventive action. Previous cross-sectional metabolomics studies of T2D were either based on small sample sizes (Shaham et al, 2008; Wopereis et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011) or did not consider the influence of common risk factors of T2D (Newgard et al, 2009). Recently, based on prospective nested case–control studies with relative large samples (Rhee et al, 2011; Wang et al, 2011), five branched-chain and aromatic amino acids were identified as predictors of T2D (Wang et al, 2011). Here, using various comprehensive large-scale approaches, we measured metabolite concentration profiles (Yu et al, 2012) in the population-based (Holle et al, 2005; Wichmann et al, 2005) Cooperative Health Research in the Region of Augsburg (KORA) baseline (survey 4 (S4)) and follow-up (F4) studies (Rathmann et al, 2009; Meisinger et al, 2010; Jourdan et al, 2012). The results of these cross-sectional and prospective studies allowed us to (i) reliably identify candidate biomarkers of pre-diabetes and (ii) build metabolite–protein networks to understand diabetes-related metabolic pathways. Results Study participants Individuals with known T2D were identified by physician-validated self-reporting (Rathmann et al, 2010) and excluded from our analysis, to avoid potential influence from anti-diabetic medication with non-fasting participants and individuals with missing values (Figure 1A). Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose load), individuals were defined according to the WHO diagnostic criteria to have normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D (dT2D) (WHO, 1999; Rathmann et al, 2009; Meisinger et al, 2010; Supplementary Table S1). The sample sets include 91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 1A; study characteristics are shown in Table I). Of the 1010 individuals in a fasting state who participated at baseline and follow-up surveys (Figure 1B, study characteristics of the KORA F4 survey are shown in Supplementary Table S2), 876 of them were non-diabetic at baseline. Out of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 1C). From the 641 individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years later (Figure 1D). The study characteristics of the prospective KORA S4→F4 are shown in Table II. Figure 1.Population description. Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and IGT participants. Download figure Download PowerPoint Table 1. Characteristics of the KORA S4 cross-sectional study sample Clinical and laboratory parameters NGT i-IFG IGT dT2D N 866 102 238 91 Age (years) 63.5±5.5 64.1±5.2 65.2±5.2 65.9±5.4 Sex (female) (%) 52.2 30.4 44.9 41.8 BMI (kg/m2) 27.7±4.1 29.2±4 29.6±4.1 30.2±3.9 Physical activity (% >1 h per week) 46.7 35.3 39.9 36.3 Alcohol intakea (%) 20.2 20.5 25.2 24.2 Current smoker (%) 14.8 10.8 10.9 23.1 Systolic BP (mm Hg) 131.7±18.9 138.9±17.9 140.7±19.8 146.8±21.5 HDL cholesterol (mg/dl) 60.5±16.4 55.7±15.9 55.7±15.1 50.0±15.8 LDL cholesterol (mg/dl) 154.5±39.8 152.1±37.7 155.2±38.6 146.1±44.6 Triglycerides (mg/dl) 120.7±68.3 145.0±96.0 146.6±80.0 170.6±107.1 HbA1c (%) 5.56±0.33 5.62±0.33 5.66±0.39 6.21±0.83 Fasting glucose (mg/dl) 95.6±7.1 114.2±3.7 104.5±9.7 133.2±31.7 2-h Glucose (mg/dl) 102.1±21.0 109.3±18.7 163.4±16.4 232.1±63.7 Fasting insulin (μU/ml) 10.48±7.28 16.26±9.67 13.92±9.53 17.70±12.61 NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, impaired glucose tolerance; dT2D, newly diagnosed type 2 diabetes; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means±s.d. are given for each variable and each group (NGT, i-IFG, IGT and dT2D). a ⩾20 g/day for women; ⩾40 g/day for men. Table 2. Characteristics of the KORA S4→F4 prospective study samples NGT at baseline (n=589) Non-T2D at baseline (n=876) Remained NGT at follow-up Developed IGT at follow-up Remained Non-T2D at follow-up Developed T2D at follow-up N 471 118 785 91 Age (years) 62.4±5.4 63.9±5.5 62.9±5.4 65.5±5.2 Sex (female) (%) 52.2 55.9 50.8 34.1 BMI (kg/m2) 27.2±3.8 28.2±3.9 27.9±4 30.2±3.6 Physical activity (% >1 h per week) 52.9 43.2 52.2 58.2 Alcohol intakea (%) 19.9 20.3 20.6 19.8 Smoker (%) 14.6 9.3 12.0 14.3 Systolic BP (mm Hg) 129.6±18.2 134.2±18.7 132.4±18.6 137.8±19 HDL cholesterol (mg/dl) 61.3±16.8 58.9±16.2 60.0±16.5 51.9±12.4 LDL cholesterol (mg/dl) 153.9±38.4 156.9±42.7 154.5±39.5 157.7±41.6 Triglycerides (mg/dl) 118.1±63.9 129.5±79.0 125.0±70.0 151.2±74.2 HbA1c (%) 5.54±0.33 5.59±0.34 5.6±0.3 5.8±0.4 Fasting glucose (mg/dl) 94.7±6.9 96.6±7.1 97.7±8.8 106.1±10.1 2-h Glucose (mg/dl) 98.2±20.5 109.9±16.8 109.3±28 145.9±32.3 Fasting insulin (μU/ml) 9.91±6.48 11
0
Citation642
0
Save
0

Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators

Hans‐Georg Joost et al.Apr 1, 2002
+13
J
G
H
The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.
0
Citation401
0
Save
0

GOAT links dietary lipids with the endocrine control of energy balance

Henriette Kirchner et al.Jun 5, 2009
+9
P
J
H
It has been a long-held belief that the hormone ghrelin is activated when an animal is hungry, inducing the brain to increase food intake. Now, Matthias Tschöp and his colleagues show in vivo that it is not the deficiency of calories per se that activates ghrelin, but rather the presence of energy-rich medium-chain dietary fats. Central nervous system nutrient sensing and afferent endocrine signaling have been established as parallel systems communicating metabolic status and energy availability in vertebrates. The only afferent endocrine signal known to require modification with a fatty acid side chain is the orexigenic hormone ghrelin. We find that the ghrelin O-acyl transferase (GOAT), which is essential for ghrelin acylation, is regulated by nutrient availability, depends on specific dietary lipids as acylation substrates and links ingested lipids to energy expenditure and body fat mass. These data implicate the ghrelin-GOAT system as a signaling pathway that alerts the central nervous system to the presence of dietary calories, rather than to their absence as is commonly accepted.
0

The central melanocortin system directly controls peripheral lipid metabolism

Rubén Nogueiras et al.Sep 21, 2007
+23
D
P
R
Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.
0

An Accurate Risk Score Based on Anthropometric, Dietary, and Lifestyle Factors to Predict the Development of Type 2 Diabetes

Matthias Schulze et al.Feb 27, 2007
+9
H
K
M
We aimed to develop a precise risk score for the screening of large populations for individuals at high risk of developing type 2 diabetes based on noninvasive measurements of major risk factors in German study populations.A prospective cohort study (European Prospective Investigation into Cancer and Nutrition [EPIC]-Potsdam study) of 9,729 men and 15,438 women aged 35-65 years was used to derive a risk score predicting incident type 2 diabetes. Multivariate Cox regression model coefficients were used to weigh each variable in the calculation of the score. Data from the EPIC-Heidelberg, the Tübingen Family Study for Type 2 Diabetes (TUF), and the Metabolic Syndrome Berlin Potsdam (MeSyBePo) study were used to validate this score.Information on age, waist circumference, height, history of hypertension, physical activity, smoking, and consumption of red meat, whole-grain bread, coffee, and alcohol formed the German Diabetes Risk Score (mean 446 points [range 118-983]). The probability of developing diabetes within 5 years in the EPIC-Potsdam study increased from 0.3% for 300 to 23.2% for 750 score points. The area under the receiver-operator characteristic (ROC) curve was 0.84 in the EPIC-Potsdam and 0.82 in the EPIC-Heidelberg studies. Correlation coefficients between the German Diabetes Risk Score and insulin sensitivity in nondiabetic individuals were -0.56 in the TUF and -0.45 in the MeSyBePo studies. ROC values for undiagnosed diabetes were 0.83 in the TUF and 0.75 in the MeSyBePo studies.The German Diabetes Risk Score (available at www.dife.de) is an accurate tool to identify individuals at high risk for or with undiagnosed type 2 diabetes.
0
Citation360
0
Save
0

Plasma Fetuin-A Levels and the Risk of Type 2 Diabetes

Norbert Stefan et al.Jul 16, 2008
+4
C
A
N
OBJECTIVE—The liver-secreted protein fetuin-A induces insulin resistance in animals, and circulating fetuin-A is elevated in insulin resistance and fatty liver in humans. We investigated whether plasma fetuin-A levels predict the incidence of type 2 diabetes in a large prospective, population-based study. RESEARCH DESIGN AND METHODS—A case-cohort study within the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study comprising 27,548 subjects was designed. We randomly selected a subcohort of 2,500 individuals of whom 2,164 were diabetes free at baseline and had anamnestic, anthropometrical, and metabolic data for analysis. Of the 849 incident diabetic case subjects identified in the full cohort during 7 years of follow-up, 703 remained for analyses after similar exclusions. RESULTS—Plasma fetuin-A levels were positively associated with diabetes risk after adjustment for age (relative risk [RR] for extreme quintiles 1.75 [95% CI 1.32–2.31]; RR for 10 μg/ml 1.04 [1.03–1.06]). The association remained significant after adjustment for sex, BMI, waist circumference, and lifestyle risk factors (RR for 10 μg/ml 1.03 [1.01–1.06]). Adjustment for glucose, triglycerides, HDL cholesterol, A1C, γ-glutamyltransferase, or high-sensitivity C-reactive protein or mutual adjustment for these biomarkers did not appreciably change this result (RR for 10 μg/ml full adjusted model 1.05 [1.02–1.07]). Furthermore, fetuin-A was associated with increased diabetes risk particularly in individuals with elevated plasma glucose. CONCLUSIONS—Our data suggest that fetuin-A is an independent risk factor of type 2 diabetes.
0

Consuming Fructose‐sweetened Beverages Increases Body Adiposity in Mice

Hella Jürgens et al.Jul 1, 2005
+11
T
W
H
The marked increase in the prevalence of obesity in the United States has recently been attributed to the increased fructose consumption. To determine if and how fructose might promote obesity in an animal model, we measured body composition, energy intake, energy expenditure, substrate oxidation, and several endocrine parameters related to energy homeostasis in mice consuming fructose.We compared the effects of ad libitum access to fructose (15% solution in water), sucrose (10%, popular soft drink), and artificial sweetener (0% calories, popular diet soft drink) on adipogenesis and energy metabolism in mice.Exposure to fructose water increased adiposity, whereas increased fat mass after consumption of soft drinks or diet soft drinks did not reach statistical significance (n = 9 each group). Total intake of energy was unaltered, because mice proportionally reduced their caloric intake from chow. There was a trend toward reduced energy expenditure and increased respiratory quotient, albeit not significant, in the fructose group. Furthermore, fructose produced a hepatic lipid accumulation with a characteristic pericentral pattern.These data are compatible with the conclusion that a high intake of fructose selectively enhances adipogenesis, possibly through a shift of substrate use to lipogenesis.