TP
Tobias Pischon
Author with expertise in Inflammation and Obesity-Related Metabolic Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(86% Open Access)
Cited by:
10,142
h-index:
90
/
i10-index:
244
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Plasma Adiponectin Levels and Risk of Myocardial Infarction in Men

Tobias PischonApr 14, 2004
ContextAdiponectin, a recently discovered adipocyte-derived peptide, is involved in the regulation of insulin sensitivity and lipid oxidation and, purportedly, in the development of atherosclerosis and coronary heart disease in humans.ObjectiveTo assess prospectively whether plasma adiponectin concentrations are associated with risk of myocardial infarction (MI).Design, Setting, and ParticipantsNested case-control study among 18 225 male participants of the Health Professionals Follow-up Study aged 40 to 75 years who were free of diagnosed cardiovascular disease at the time of blood draw (1993-1995). During 6 years of follow-up through January 31, 2000, 266 men subsequently developed nonfatal MI or fatal coronary heart disease. Using risk set sampling, controls were selected in a 2:1 ratio matched for age, date of blood draw, and smoking status (n = 532).Main Outcome MeasureIncidence of nonfatal MI and fatal coronary heart disease by adiponectin level.ResultsAfter adjustment for matched variables, participants in the highest compared with the lowest quintile of adiponectin levels had a significantly decreased risk of MI (relative risk [RR], 0.39; 95% confidence interval [CI], 0.23-0.64; P for trend <.001). Additional adjustment for family history of MI, body mass index, alcohol consumption, physical activity, and history of diabetes and hypertension did not substantively affect this relationship (RR, 0.41; 95% CI, 0.24-0.70; P for trend <.001). Further adjustment for hemoglobin A1c or C-reactive protein levels also had little impact, but additional adjustment for low- and high-density lipoprotein cholesterol levels modestly attenuated this association (RR, 0.56; 95% CI, 0.32-0.99; P for trend = .02).ConclusionsHigh plasma adiponectin concentrations are associated with lower risk of MI in men. This relationship can be only partly explained by differences in blood lipids and is independent of inflammation and glycemic status.
0

Identification of Serum Metabolites Associated With Risk of Type 2 Diabetes Using a Targeted Metabolomic Approach

Anna Floegel et al.Oct 6, 2012
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
0

Novel biomarkers for pre‐diabetes identified by metabolomics

Rui Wang‐Sattler et al.Jan 1, 2012
Article25 September 2012Open Access Novel biomarkers for pre-diabetes identified by metabolomics Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Rui Wang-Sattler Corresponding Author Rui Wang-Sattler Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Zhonghao Yu Zhonghao Yu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Herder Christian Herder German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Ana C Messias Ana C Messias Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Anna Floegel Anna Floegel Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Ying He Ying He Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Katharina Heim Katharina Heim Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Monica Campillos Monica Campillos Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christina Holzapfel Christina Holzapfel Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany Search for more papers by this author Barbara Thorand Barbara Thorand Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Harald Grallert Harald Grallert Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Tao Xu Tao Xu Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Erik Bader Erik Bader Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Huth Cornelia Huth Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Kirstin Mittelstrass Kirstin Mittelstrass Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Angela Döring Angela Döring Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christa Meisinger Christa Meisinger Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Christian Gieger Christian Gieger Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Cornelia Prehn Cornelia Prehn Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Werner Roemisch-Margl Werner Roemisch-Margl Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Maren Carstensen Maren Carstensen German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Lu Xie Lu Xie Shanghai Center for Bioinformation Technology, Shanghai, China Search for more papers by this author Hisami Yamanaka-Okumura Hisami Yamanaka-Okumura Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Search for more papers by this author Guihong Xing Guihong Xing Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China Search for more papers by this author Uta Ceglarek Uta Ceglarek Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Joachim Thiery Joachim Thiery Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany Search for more papers by this author Guido Giani Guido Giani German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Heiko Lickert Heiko Lickert Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Xu Lin Xu Lin Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Yixue Li Yixue Li Shanghai Center for Bioinformation Technology, Shanghai, China Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Search for more papers by this author Heiner Boeing Heiner Boeing Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Hans-Georg Joost Hans-Georg Joost Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Search for more papers by this author Martin Hrabé de Angelis Martin Hrabé de Angelis Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Wolfgang Rathmann Wolfgang Rathmann German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Search for more papers by this author Karsten Suhre Karsten Suhre Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar Search for more papers by this author Holger Prokisch Holger Prokisch Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Annette Peters Annette Peters Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany Search for more papers by this author Thomas Meitinger Thomas Meitinger Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany Search for more papers by this author Michael Roden Michael Roden German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany Klinikum rechts der Isar, Technische Universität München, Munich, Germany Search for more papers by this author H-Erich Wichmann H-Erich Wichmann Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany Search for more papers by this author Tobias Pischon Tobias Pischon Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany Search for more papers by this author Jerzy Adamski Jerzy Adamski Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany Chair of Experimental Genetics, Technische Universität München, Munich, Germany Search for more papers by this author Thomas Illig Thomas Illig Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany Hannover Unified Biobank, Hannover Medical School, Hannover, Germany Search for more papers by this author Author Information Rui Wang-Sattler 1,‡, Zhonghao Yu1,‡, Christian Herder2,‡, Ana C Messias3,‡, Anna Floegel4, Ying He5,6, Katharina Heim7, Monica Campillos8, Christina Holzapfel1,9, Barbara Thorand10, Harald Grallert1, Tao Xu1, Erik Bader1, Cornelia Huth10, Kirstin Mittelstrass1, Angela Döring11, Christa Meisinger10, Christian Gieger12, Cornelia Prehn13, Werner Roemisch-Margl8, Maren Carstensen2, Lu Xie5, Hisami Yamanaka-Okumura14, Guihong Xing15, Uta Ceglarek16, Joachim Thiery16, Guido Giani17, Heiko Lickert18, Xu Lin19, Yixue Li5,6, Heiner Boeing4, Hans-Georg Joost4, Martin Hrabé de Angelis13,20, Wolfgang Rathmann17, Karsten Suhre8,21,22, Holger Prokisch7, Annette Peters10, Thomas Meitinger7,23, Michael Roden2,24, H-Erich Wichmann11,25, Tobias Pischon4,26, Jerzy Adamski13,20 and Thomas Illig1,27 1Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 2German Diabetes Center, Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 3Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany 4Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany 5Shanghai Center for Bioinformation Technology, Shanghai, China 6Key Lab of Systems Biology, Bioinformatics Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 7Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany 8Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany 9Else Kroener-Fresenius-Center for Nutritional Medicine, University Hospital ‘Klinikum rechts der Isar’, Technische Universität München, Munich, Germany 10Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany 11Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg, Germany 12Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany 13Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany 14Department of Clinical Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan 15Benxi Diabetes Clinic, Benxi Central Hospital, Benxi, China 16Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany 17German Diabetes Center, Institute of Biometrics and Epidemiology, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany 18Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany 19Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 20Chair of Experimental Genetics, Technische Universität München, Munich, Germany 21Faculty of Biology, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany 22Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar 23Department of Metabolic Diseases, University Hospital Düsseldorf, Düsseldorf, Germany 24Klinikum rechts der Isar, Technische Universität München, Munich, Germany 25Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany 26Molecular Epidemiology Group, Max Delbrueck Center for Molecular Medicine (MDC), Berlin-Buch, Germany 27Hannover Unified Biobank, Hannover Medical School, Hannover, Germany ‡These authors contributed equally to this work *Corresponding author. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Munich-Neuherberg, Germany. Tel.:+49 89 3187 3978; Fax:+49 89 3187 2428; E-mail: [email protected] Molecular Systems Biology (2012)8:615https://doi.org/10.1038/msb.2012.43 PDFDownload PDF of article text and main figures. Peer ReviewDownload a summary of the editorial decision process including editorial decision letters, reviewer comments and author responses to feedback. ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InMendeleyWechatReddit Figures & Info Type 2 diabetes (T2D) can be prevented in pre-diabetic individuals with impaired glucose tolerance (IGT). Here, we have used a metabolomics approach to identify candidate biomarkers of pre-diabetes. We quantified 140 metabolites for 4297 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) cohort. Our study revealed significant metabolic variation in pre-diabetic individuals that are distinct from known diabetes risk indicators, such as glycosylated hemoglobin levels, fasting glucose and insulin. We identified three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine) that had significantly altered levels in IGT individuals as compared to those with normal glucose tolerance, with P-values ranging from 2.4 × 10−4 to 2.1 × 10−13. Lower levels of glycine and LPC were found to be predictors not only for IGT but also for T2D, and were independently confirmed in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort. Using metabolite–protein network analysis, we identified seven T2D-related genes that are associated with these three IGT-specific metabolites by multiple interactions with four enzymes. The expression levels of these enzymes correlate with changes in the metabolite concentrations linked to diabetes. Our results may help developing novel strategies to prevent T2D. Synopsis A targeted metabolomics approach was used to identify candidate biomarkers of pre-diabetes. The relevance of the identified metabolites is further corroborated with a protein-metabolite interaction network and gene expression data. Three metabolites (glycine, lysophosphatidylcholine (LPC) (18:2) and acetylcarnitine C2) were found with significantly altered levels in pre-diabetic individuals compared with normal controls. Lower levels of glycine and LPC (18:2) were found to predict risks for pre-diabetes and type 2 diabetes (T2D). Seven T2D-related genes (PPARG, TCF7L2, HNF1A, GCK, IGF1, IRS1 and IDE) are functionally associated with the three identified metabolites. The unique combination of methodologies, including prospective population-based and nested case–control, as well as cross-sectional studies, was essential for the identification of the reported biomarkers. Introduction Type 2 diabetes (T2D) is defined by increased blood glucose levels due to pancreatic β-cell dysfunction and insulin resistance without evidence for specific causes, such as autoimmune destruction of pancreatic β-cells (Krebs et al, 2002; Stumvoll et al, 2005; Muoio and Newgard, 2008). A state of pre-diabetes (i.e., impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT)) with only slightly elevated blood glucose levels may precede T2D for years (McGarry, 2002; Tabak et al, 2012). The development of diabetes in pre-diabetic individuals can be prevented or delayed by dietary changes and increased physical activity (Tuomilehto et al, 2001; Knowler et al, 2002). However, no specific biomarkers that enable prevention have been reported. Metabolomics studies allow metabolites involved in disease mechanisms to be discovered by monitoring metabolite level changes in predisposed individuals compared with healthy ones (Shaham et al, 2008; Newgard et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011; Rhee et al, 2011; Wang et al, 2011; Cheng et al, 2012; Goek et al, 2012). Altered metabolite levels may serve as diagnostic biomarkers and enable preventive action. Previous cross-sectional metabolomics studies of T2D were either based on small sample sizes (Shaham et al, 2008; Wopereis et al, 2009; Zhao et al, 2010; Pietilainen et al, 2011) or did not consider the influence of common risk factors of T2D (Newgard et al, 2009). Recently, based on prospective nested case–control studies with relative large samples (Rhee et al, 2011; Wang et al, 2011), five branched-chain and aromatic amino acids were identified as predictors of T2D (Wang et al, 2011). Here, using various comprehensive large-scale approaches, we measured metabolite concentration profiles (Yu et al, 2012) in the population-based (Holle et al, 2005; Wichmann et al, 2005) Cooperative Health Research in the Region of Augsburg (KORA) baseline (survey 4 (S4)) and follow-up (F4) studies (Rathmann et al, 2009; Meisinger et al, 2010; Jourdan et al, 2012). The results of these cross-sectional and prospective studies allowed us to (i) reliably identify candidate biomarkers of pre-diabetes and (ii) build metabolite–protein networks to understand diabetes-related metabolic pathways. Results Study participants Individuals with known T2D were identified by physician-validated self-reporting (Rathmann et al, 2010) and excluded from our analysis, to avoid potential influence from anti-diabetic medication with non-fasting participants and individuals with missing values (Figure 1A). Based on both fasting and 2-h glucose values (i.e., 2 h post oral 75 g glucose load), individuals were defined according to the WHO diagnostic criteria to have normal glucose tolerance (NGT), isolated IFG (i-IFG), IGT or newly diagnosed T2D (dT2D) (WHO, 1999; Rathmann et al, 2009; Meisinger et al, 2010; Supplementary Table S1). The sample sets include 91 dT2D patients and 1206 individuals with non-T2D, including 866 participants with NGT, 102 with i-IFG and 238 with IGT, in the cross-sectional KORA S4 (Figure 1A; study characteristics are shown in Table I). Of the 1010 individuals in a fasting state who participated at baseline and follow-up surveys (Figure 1B, study characteristics of the KORA F4 survey are shown in Supplementary Table S2), 876 of them were non-diabetic at baseline. Out of these, about 10% developed T2D (i.e., 91 incident T2D) (Figure 1C). From the 641 individuals with NGT at baseline, 18% developed IGT (i.e., 118 incident IGT) 7 years later (Figure 1D). The study characteristics of the prospective KORA S4→F4 are shown in Table II. Figure 1.Population description. Metabolomics screens in the KORA cohort, at baseline S4 (A), overlapped between S4 and F4 (B) and prospective (C, D). Participant numbers are shown. Normal glucose tolerance (NGT), isolated impaired fasting glucose (i-IFG), impaired glucose tolerance (IGT), type 2 diabetes mellitus (T2D) and newly diagnosed T2D (dT2D). Non-T2D individuals include NGT, i-IFG and IGT participants. Download figure Download PowerPoint Table 1. Characteristics of the KORA S4 cross-sectional study sample Clinical and laboratory parameters NGT i-IFG IGT dT2D N 866 102 238 91 Age (years) 63.5±5.5 64.1±5.2 65.2±5.2 65.9±5.4 Sex (female) (%) 52.2 30.4 44.9 41.8 BMI (kg/m2) 27.7±4.1 29.2±4 29.6±4.1 30.2±3.9 Physical activity (% >1 h per week) 46.7 35.3 39.9 36.3 Alcohol intakea (%) 20.2 20.5 25.2 24.2 Current smoker (%) 14.8 10.8 10.9 23.1 Systolic BP (mm Hg) 131.7±18.9 138.9±17.9 140.7±19.8 146.8±21.5 HDL cholesterol (mg/dl) 60.5±16.4 55.7±15.9 55.7±15.1 50.0±15.8 LDL cholesterol (mg/dl) 154.5±39.8 152.1±37.7 155.2±38.6 146.1±44.6 Triglycerides (mg/dl) 120.7±68.3 145.0±96.0 146.6±80.0 170.6±107.1 HbA1c (%) 5.56±0.33 5.62±0.33 5.66±0.39 6.21±0.83 Fasting glucose (mg/dl) 95.6±7.1 114.2±3.7 104.5±9.7 133.2±31.7 2-h Glucose (mg/dl) 102.1±21.0 109.3±18.7 163.4±16.4 232.1±63.7 Fasting insulin (μU/ml) 10.48±7.28 16.26±9.67 13.92±9.53 17.70±12.61 NGT, normal glucose tolerance; i-IFG, isolated impaired fasting glucose; IGT, impaired glucose tolerance; dT2D, newly diagnosed type 2 diabetes; BP, blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Percentages of individuals or means±s.d. are given for each variable and each group (NGT, i-IFG, IGT and dT2D). a ⩾20 g/day for women; ⩾40 g/day for men. Table 2. Characteristics of the KORA S4→F4 prospective study samples NGT at baseline (n=589) Non-T2D at baseline (n=876) Remained NGT at follow-up Developed IGT at follow-up Remained Non-T2D at follow-up Developed T2D at follow-up N 471 118 785 91 Age (years) 62.4±5.4 63.9±5.5 62.9±5.4 65.5±5.2 Sex (female) (%) 52.2 55.9 50.8 34.1 BMI (kg/m2) 27.2±3.8 28.2±3.9 27.9±4 30.2±3.6 Physical activity (% >1 h per week) 52.9 43.2 52.2 58.2 Alcohol intakea (%) 19.9 20.3 20.6 19.8 Smoker (%) 14.6 9.3 12.0 14.3 Systolic BP (mm Hg) 129.6±18.2 134.2±18.7 132.4±18.6 137.8±19 HDL cholesterol (mg/dl) 61.3±16.8 58.9±16.2 60.0±16.5 51.9±12.4 LDL cholesterol (mg/dl) 153.9±38.4 156.9±42.7 154.5±39.5 157.7±41.6 Triglycerides (mg/dl) 118.1±63.9 129.5±79.0 125.0±70.0 151.2±74.2 HbA1c (%) 5.54±0.33 5.59±0.34 5.6±0.3 5.8±0.4 Fasting glucose (mg/dl) 94.7±6.9 96.6±7.1 97.7±8.8 106.1±10.1 2-h Glucose (mg/dl) 98.2±20.5 109.9±16.8 109.3±28 145.9±32.3 Fasting insulin (μU/ml) 9.91±6.48 11
0
Citation642
0
Save
0

Habitual Dietary Intake of n-3 and n-6 Fatty Acids in Relation to Inflammatory Markers Among US Men and Women

Tobias Pischon et al.Jun 24, 2003
Background— Polyunsaturated fatty acid intake favorably affects chronic inflammatory-related diseases such as cardiovascular disease; however, high intake of n-6 fatty acids may attenuate the known beneficial effects of n-3 fatty acids. Methods and Results— We investigated habitual dietary n-3 fatty acid intake and its interaction with n-6 fatty acids in relation to the plasma inflammatory markers C-reactive protein, interleukin 6, and soluble tumor necrosis factor receptors 1 and 2 (sTNF-R1 and R2) among 405 healthy men and 454 healthy women. After adjustment for other predictors of inflammation, intake of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was inversely associated with plasma levels of sTNF-R1 and sTNF-R2 ( P =0.03 and P <0.001, respectively) and somewhat less so for C-reactive protein ( P =0.08). n-3 α-linolenic acid and n-6 cis-linoleic acid were not significantly related to the inflammatory markers. We found little if any association between n-3 fatty acid (EPA+DHA) intake and tumor necrosis factor receptors among participants with low intake of n-6 but a strong inverse association among those with high n-6 intake ( P =0.04 and 0.002 for interaction of n-3 with n-6 on sTNF-R1 and sTNF-R2, respectively). Conclusions— These results suggest that n-6 fatty acids do not inhibit the antiinflammatory effects of n-3 fatty acids and that the combination of both types of fatty acids is associated with the lowest levels of inflammation. The inhibition of inflammatory cytokines may be one possible mechanism for the observed beneficial effects of these fatty acids on chronic inflammatory-related diseases.
0

Body Size and Risk of Colon and Rectal Cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC)

Tobias Pischon et al.Jul 5, 2006
Body weight and body mass index (BMI) are positively related to risk of colon cancer in men, whereas weak or no associations exist in women. This discrepancy may be related to differences in fat distribution between sexes or to the use of hormone replacement therapy (HRT) in women.We used multivariable adjusted Cox proportional hazards models to examine the association between anthropometric measures and risks of colon and rectal cancer among 368 277 men and women who were free of cancer at baseline from nine countries of the European Prospective Investigation Into Cancer and Nutrition. All statistical tests were two-sided.During 6.1 years of follow-up, we identified 984 and 586 patients with colon and rectal cancer, respectively. Body weight and BMI were statistically significantly associated with colon cancer risk in men (highest versus lowest quintile of BMI, relative risk [RR] = 1.55, 95% confidence interval [CI] = 1.12 to 2.15; P(trend) = .006) but not in women. In contrast, comparisons of the highest to the lowest quintile showed that several anthropometric measures, including waist circumference (men, RR = 1.39, 95% CI = 1.01 to 1.93; P(trend) = .001; women, RR = 1.48, 95% CI = 1.08 to 2.03; P(trend) = .008), waist-to-hip ratio (WHR; men, RR = 1.51, 95% CI = 1.06 to 2.15; P(trend) = .006; women, RR = 1.52, 95% CI = 1.12 to 2.05; P(trend) = .002), and height (men, RR = 1.40, 95% CI = 0.99 to 1.98; P(trend) = .04; women, RR = 1.79, 95% CI = 1.30 to 2.46; P(trend)<.001) were related to colon cancer risk in both sexes. The estimated absolute risk of developing colon cancer within 5 years was 203 and 131 cases per 100,000 men and 129 and 86 cases per 100,000 women in the highest and lowest quintiles of WHR, respectively. Upon further stratification, no association of waist circumference and WHR with risk of colon cancer was observed among postmenopausal women who used HRT. None of the anthropometric measures was statistically significantly related to rectal cancer.Waist circumference and WHR, indicators of abdominal obesity, were strongly associated with colon cancer risk in men and women in this population. The association of abdominal obesity with colon cancer risk may vary depending on HRT use in postmenopausal women; however, these findings require confirmation in future studies.
0
Citation540
0
Save
0

Non–High-Density Lipoprotein Cholesterol and Apolipoprotein B in the Prediction of Coronary Heart Disease in Men

Tobias Pischon et al.Nov 29, 2005
Background— Apolipoprotein B (apoB) plasma levels reflect the concentration of proatherogenic lipoproteins very low-density lipoprotein and low-density lipoprotein (LDL), whereas non–high-density lipoprotein cholesterol (non–HDL-C) levels reflect the concentration of cholesterol transported by these particles. Methods and Results— The aim of our study was to compare apoB, non–HDL-C, LDL cholesterol (LDL-C), and other lipid markers as predictors of coronary heart disease (CHD) in a nested case-control study among 18 225 participants in the Health Professionals Follow-up Study. Among men who were free of diagnosed cardiovascular disease at the time of blood collection, 266 had nonfatal myocardial infarction or fatal CHD during 6 years of follow-up. Through the use of risk set sampling, control subjects were selected at a 2:1 ratio and matched with regard to age, date of blood collection, and smoking status. After adjustment for matching factors, the relative risk of CHD in the highest quintile compared with the lowest quintile was 2.76 (95% confidence interval [CI], 1.66 to 4.58) for non–HDL-C, 3.01 (95% CI, 1.81 to 5.00) for apoB, 1.81 (95% CI, 1.12 to 2.93) for LDL-C, 0.31 (95% CI, 0.18 to 0.52) for HDL-C, 2.41 (95% CI, 1.43 to 4.07) for triglycerides (all P trend <0.001), and 1.42 (95% CI, 0.86 to 2.32, P trend =0.19) for lipoprotein(a). When non–HDL-C and LDL-C were mutually adjusted, only non–HDL-C was predictive of CHD. When non–HDL-C and apoB were mutually adjusted, only apoB was predictive; the relative risk was 4.18 (95% CI, 1.30 to 13.49; P trend =0.02) for apoB compared with 0.70 (95% CI, 0.21 to 2.27; P trend =0.72) for non–HDL-C. Triglycerides added significant information to non–HDL-C but not to apoB for CHD risk prediction. Conclusions— Although non–HDL-C and apoB were both strong predictors of CHD in this male cohort, more so than LDL-C, the findings support the concept that the plasma concentration of atherogenic lipoprotein particles measured by apoB is more predictive in development of CHD than the cholesterol carried by these particles, measured by non–HDL-C.
0

Association between pre-diagnostic circulating vitamin D concentration and risk of colorectal cancer in European populations:a nested case-control study

Mazda Jenab et al.Jan 21, 2010
Transplantation tolerance is induced reliably in experimental animals following intrathymic inoculation with the relevant donor strain Ags; however, the immunological mechanisms responsible for the induction and maintenance of the tolerant state remain unknown. We investigated these mechanisms using TCR transgenic mice (TS1) that carry T cells specific for an immunodominant, MHC class II-restricted peptide (S1) of the influenza PR8 hemagglutinin (HA) molecule. We demonstrated that TS1 mice reject skin grafts that have transgene-encoded HA molecules (HA104) as their sole antigenic disparity and that intrathymic but not i.v. inoculation of TS1 mice with S1 peptide induces tolerance to HA-expressing skin grafts. Intrathymic peptide inoculation was associated with a dose-dependent reduction in T cells bearing high levels of TCR specific for HA. However, this reduction was both incomplete and transient, with a full recovery of S1-specific thymocytes by 4 wk. Peptide inoculation into the thymus also resulted in the generation of immunoregulatory T cells (CD4+CD25+) that migrated to the peripheral lymphoid organs. Adoptive transfer experiments using FACS sorted CD4+CD25 and CD4+CD25+ T cells from tolerant mice revealed that the former but not the latter maintain the capacity to induce rejection of HA bearing skin allografts in syngeneic hosts. Our results suggest that both clonal frequency reduction in the thymus and immunoregulatory T cells exported from the thymus are critical to transplantation tolerance induced by intrathymic Ag inoculation.
Load More