NB
Nils Borchard
Author with expertise in Soil Carbon Dynamics and Nutrient Cycling in Ecosystems
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
844
h-index:
24
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review

James Ippolito et al.Sep 28, 2020
Abstract Various studies have established that feedstock choice, pyrolysis temperature, and pyrolysis type influence final biochar physicochemical characteristics. However, overarching analyses of pre-biochar creation choices and correlations to biochar characteristics are severely lacking. Thus, the objective of this work was to help researchers, biochar-stakeholders, and practitioners make more well-informed choices in terms of how these three major parameters influence the final biochar product. Utilizing approximately 5400 peer-reviewed journal articles and over 50,800 individual data points, herein we elucidate the selections that influence final biochar physical and chemical properties, total nutrient content, and perhaps more importantly tools one can use to predict biochar’s nutrient availability. Based on the large dataset collected, it appears that pyrolysis type (fast or slow) plays a minor role in biochar physico- (inorganic) chemical characteristics; few differences were evident between production styles. Pyrolysis temperature, however, affects biochar’s longevity, with pyrolysis temperatures > 500 °C generally leading to longer-term (i.e., > 1000 years) half-lives. Greater pyrolysis temperatures also led to biochars containing greater overall C and specific surface area (SSA), which could promote soil physico-chemical improvements. However, based on the collected data, it appears that feedstock selection has the largest influence on biochar properties. Specific surface area is greatest in wood-based biochars, which in combination with pyrolysis temperature could likely promote greater changes in soil physical characteristics over other feedstock-based biochars. Crop- and other grass-based biochars appear to have cation exchange capacities greater than other biochars, which in combination with pyrolysis temperature could potentially lead to longer-term changes in soil nutrient retention. The collected data also suggest that one can reasonably predict the availability of various biochar nutrients (e.g., N, P, K, Ca, Mg, Fe, and Cu) based on feedstock choice and total nutrient content. Results can be used to create designer biochars to help solve environmental issues and supply a variety of plant-available nutrients for crop growth.
0

Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems

Sigit Sasmito et al.Dec 26, 2019
Mangrove organic carbon is primarily stored in soils, which contain more than two-thirds of total mangrove ecosystem carbon stocks. Despite increasing recognition of the critical role of mangrove ecosystems for climate change mitigation, there is limited understanding of soil organic carbon sequestration mechanisms in undisturbed low-latitude mangroves, specifically on organic carbon burial rates and sources. This study assessed soil organic carbon burial rates, sources and stocks across an undisturbed coastal mudflat and mangrove hydrogeomorphological catena (fringe mangrove and interior mangrove) in Bintuni Bay, West Papua Province, Indonesia. 210Pb radionuclide sediment dating, and mixing model of natural stable isotope signatures (δ 13C and δ15N) and C/N ratio were used to estimate organic carbon burial rates and to quantify proportions of allochthonous (i.e., upland terrestrial forest) and autochthonous (i.e., on-site mangrove forest) organic carbon in the top 50 cm of the soil. Burial rates were in the range of 0.21–1.19 Mg C ha−1 yr−1. Compared to the fringe mangroves, organic carbon burial rates in interior mangroves were almost twice as high. Primary productivity of C3 upland forest vegetation and mangroves induced soil organic carbon burial in interior mangroves and this was consistent with the formation of the largest organic carbon stocks (179 ± 82 Mg C ha−1). By contrast, organic carbon stored in the fringe mangrove (68 ± 11 Mg C ha−1) and mudflat (62 ± 10 Mg C ha−1) soils mainly originated from upland forests (allochthonous origin). These findings clearly indicate that carbon sequestered and cycling in mangrove and terrestrial forest ecosystems are closely linked, and at least a part of carbon losses (e.g., erosion) from terrestrial forests is buried in mangrove ecosystems.
0
Paper
Citation200
0
Save
0

BIOCHAR AS A TOOL TO REDUCE THE AGRICULTURAL GREENHOUSE-GAS BURDEN – KNOWNS, UNKNOWNS AND FUTURE RESEARCH NEEDS

Claudia Kammann et al.Jun 28, 2017
Agriculture and land use change has significantly increased atmospheric emissions of the non-CO2 green-house gases (GHG) nitrous oxide (N2O) and methane (CH4). Since human nutritional and bioenergy needs continue to increase, at a shrinking global land area for production, novel land management strategies are required that reduce the GHG footprint per unit of yield. Here we review the potential of biochar to reduce N2O and CH4 emissions from agricultural practices including potential mechanisms behind observed effects. Furthermore, we investigate alternative uses of biochar in agricultural land management that may significantly reduce the GHG-emissions-per-unit-of-product footprint, such as (i) pyrolysis of manures as hygienic alternative to direct soil application, (ii) using biochar as fertilizer carrier matrix for underfoot fertilization, biochar use (iii) as composting additive or (iv) as feed additive in animal husbandry or for manure treatment. We conclude that the largest future research needs lay in conducting life-cycle GHG assessments when using biochar as an on-farm management tool for nutrient-rich biomass waste streams.
0
Paper
Citation186
0
Save
0

Socioecological dynamics of diverse global permafrost-agroecosystems under environmental change

Melissa Jones et al.Jun 17, 2024
Permafrost-agroecosystems include all cultivation and pastoral activities in areas underlain by permafrost. These systems support local livelihoods and food production and are rarely considered in global agricultural studies but may become more relevant as climate change is increasing opportunities for food production in high latitude and mountainous areas. The exact locations and amount of agricultural production in areas containing permafrost are currently unknown, therefore we provide an overview of countries where both permafrost and agricultural activities are present. We highlight the socioecological diversity and complexities of permafrost-agroecosystems through seven case studies: (1) crop cultivation in Alaska, USA; (2) Indigenous food systems and crop cultivation in the Northwest Territories, Canada; (3) horse and cattle husbandry and Indigenous hay production in the Sakha Republic, Russia; (4) mobile pastoralism and husbandry in Mongolia; (5) yak pastoralism in the Central Himalaya, Nepal; (6) berry picking and reindeer herding in northern Fennoscandia; and (7) reindeer herding in northwest Russia. We discuss regional knowledge gaps associated with permafrost and make recommendations to policy makers and land users for adapting to changing permafrost environments. A better understanding of permafrost-agroecosystems is needed to help sustainably manage and develop these systems considering rapidly changing climate, environments, economies, and industries.