For two series of polyethylenimine-graft-poly(ethylene glycol) (PEI-g-PEG) block copolymers, the influence of copolymer structure on DNA complexation was investigated and physicochemical properties of these complexes were compared with the results of blood compatibility, cytotoxicity, and transfection activity assays. In the first series, PEI (25 kDa) was grafted to different degrees of substitution with PEG (5 kDa) and in the second series the molecular weight (MW) of PEG was varied (550 Da to 20 kDa). Using atomic force microscopy, we found that the copolymer block structure strongly influenced the DNA complex size and morphology: PEG 5 kDa significantly reduced the diameter of the spherical complexes from 142 ± 59 to 61 ± 28 nm. With increasing degree of PEG grafting, complexation of DNA was impeded and complexes lost their spherical shape. Copolymers with PEG 20 kDa yielded small, compact complexes with DNA (51 ± 23 nm) whereas copolymers with PEG 550 Da resulted in large and diffuse structures (130 ± 60 nm). The ζ-potential of complexes was reduced with increasing degree of PEG grafting if MW ≥ 5 kDa. PEG 550 Da did not shield positive charges of PEI sufficiently leading to hemolysis and erythrocyte aggregation. Cytotoxicity (lactate dehydrogenase assay) was independent of MW of PEG but affected by the degree of PEG substitution: all copolymers with more than six PEG blocks formed DNA complexes of low toxicity. Finally, transfection efficiency of the complexes was studied. The combination of large particles, low toxicity, and high positive surface charge as in the case of copolymers with many PEG 550 Da blocks proved to be most efficient for in vitro gene transfer. To conclude, the degree of PEGylation and the MW of PEG were found to strongly influence DNA condensation of PEI and therefore also affect the biological activity of the PEI-g-PEG/DNA complexes. These results provide a basis for the rational design of block copolymer gene delivery systems.