XZ
Xu Zhao
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
14,009
h-index:
19
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase

Xiao-Li Ping et al.Jan 10, 2014
The methyltransferase like 3 (METTL3)-containing methyltransferase complex catalyzes the N6-methyladenosine (m6A) formation, a novel epitranscriptomic marker; however, the nature of this complex remains largely unknown. Here we report two new components of the human m6A methyltransferase complex, Wilms' tumor 1-associating protein (WTAP) and methyltransferase like 14 (METTL14). WTAP interacts with METTL3 and METTL14, and is required for their localization into nuclear speckles enriched with pre-mRNA processing factors and for catalytic activity of the m6A methyltransferase in vivo. The majority of RNAs bound by WTAP and METTL3 in vivo represent mRNAs containing the consensus m6A motif. In the absence of WTAP, the RNA-binding capability of METTL3 is strongly reduced, suggesting that WTAP may function to regulate recruitment of the m6A methyltransferase complex to mRNA targets. Furthermore, transcriptomic analyses in combination with photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) illustrate that WTAP and METTL3 regulate expression and alternative splicing of genes involved in transcription and RNA processing. Morpholino-mediated knockdown targeting WTAP and/or METTL3 in zebrafish embryos caused tissue differentiation defects and increased apoptosis. These findings provide strong evidence that WTAP may function as a regulatory subunit in the m6A methyltransferase complex and play a critical role in epitranscriptomic regulation of RNA metabolism.
0
Citation1,911
0
Save
0

FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis

Xu Zhao et al.Nov 21, 2014
The role of Fat Mass and Obesity-associated protein (FTO) and its substrate N6-methyladenosine (m6A) in mRNA processing and adipogenesis remains largely unknown. We show that FTO expression and m6A levels are inversely correlated during adipogenesis. FTO depletion blocks differentiation and only catalytically active FTO restores adipogenesis. Transcriptome analyses in combination with m6A-seq revealed that gene expression and mRNA splicing of grouped genes are regulated by FTO. M6A is enriched in exonic regions flanking 5′- and 3′-splice sites, spatially overlapping with mRNA splicing regulatory serine/arginine-rich (SR) protein exonic splicing enhancer binding regions. Enhanced levels of m6A in response to FTO depletion promotes the RNA binding ability of SRSF2 protein, leading to increased inclusion of target exons. FTO controls exonic splicing of adipogenic regulatory factor RUNX1T1 by regulating m6A levels around splice sites and thereby modulates differentiation. These findings provide compelling evidence that FTO-dependent m6A demethylation functions as a novel regulatory mechanism of RNA processing and plays a critical role in the regulation of adipogenesis.
0
Citation986
0
Save
0

Ythdf2-mediated m6A mRNA clearance modulates neural development in mice

Miaomiao Li et al.May 31, 2018
N 6 -methyladenosine (m6A) modification in mRNAs was recently shown to be dynamically regulated, indicating a pivotal role in multiple developmental processes. Most recently, it was shown that the Mettl3-Mettl14 writer complex of this mark is required for the temporal control of cortical neurogenesis. The m6A reader protein Ythdf2 promotes mRNA degradation by recognizing m6A and recruiting the mRNA decay machinery.We show that the conditional depletion of the m6A reader protein Ythdf2 in mice causes lethality at late embryonic developmental stages, with embryos characterized by compromised neural development. We demonstrate that neural stem/progenitor cell (NSPC) self-renewal and spatiotemporal generation of neurons and other cell types are severely impacted by the loss of Ythdf2 in embryonic neocortex. Combining in vivo and in vitro assays, we show that the proliferation and differentiation capabilities of NSPCs decrease significantly in Ythdf2 -/- embryos. The Ythdf2 -/- neurons are unable to produce normally functioning neurites, leading to failure in recovery upon reactive oxygen species stimulation. Consistently, expression of genes enriched in neural development pathways is significantly disturbed. Detailed analysis of the m6A-methylomes of Ythdf2 -/- NSPCs identifies that the JAK-STAT cascade inhibitory genes contribute to neuroprotection and neurite outgrowths show increased expression and m6A enrichment. In agreement with the function of Ythdf2, delayed degradation of neuron differentiation-related m6A-containing mRNAs is seen in Ythdf2 -/- NSPCs.We show that the m6A reader protein Ythdf2 modulates neural development by promoting m6A-dependent degradation of neural development-related mRNA targets.
0
Citation285
0
Save
10

Waves of sumoylation support transcription dynamics during adipocyte differentiation

Xu Zhao et al.Feb 20, 2021
Summary Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, little is known about the mechanisms that orchestrate the dramatic transcriptional changes leading to adipocyte differentiation. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like Ppar γ /RXR and their co-factors is associated with the transcription of adipogenic genes. Our data demonstrate that the sumoylation pathway coordinates the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides an in-depth resource of gene transcription dynamics, SUMO-regulated genes and sumoylation sites during adipogenesis.
10
Citation1
0
Save
Load More