YS
Yue Shan
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(56% Open Access)
Cited by:
486
h-index:
14
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits

Bingxin Zhao et al.Nov 1, 2019
Volumetric variations of the human brain are heritable and are associated with many brain-related complex traits. Here we performed genome-wide association studies (GWAS) of 101 brain volumetric phenotypes using the UK Biobank sample including 19,629 participants. GWAS identified 365 independent genetic variants exceeding a significance threshold of 4.9 × 10−10, adjusted for testing multiple phenotypes. A gene-based association study found 157 associated genes (124 new), and functional gene mapping analysis linked 146 additional genes. Many of the discovered genetic variants and genes have previously been implicated in cognitive and mental health traits. Through genome-wide polygenic-risk-score prediction, more than 6% of the phenotypic variance (P = 3.13 × 10−24) in four other independent studies could be explained by the UK Biobank GWAS results. In conclusion, our study identifies many new genetic associations at the variant, locus and gene levels and advances our understanding of the pleiotropy and genetic co-architecture between brain volumes and other traits. Genome-wide analyses in 19,629 individuals identify 365 independent variants associated with brain volumetric phenotypes. The study provides insight into the overlapping genetic architecture of brain volume measures and cognitive and mental health traits.
0
Citation238
0
Save
0

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

Madeline Kowalski et al.Dec 23, 2019
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11–34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
0
Citation228
0
Save
0

Common genetic variation influencing human white matter microstructure

Bingxin Zhao et al.May 25, 2020
Abstract Brain regions communicate with each other via tracts of myelinated axons, commonly referred to as white matter. White matter microstructure can be measured in the living human brain using diffusion based magnetic resonance imaging (dMRI), and has been found to be altered in patients with neuropsychiatric disorders. Although under strong genetic control, few genetic variants influencing white matter microstructure have ever been identified. Here we identified common genetic variants influencing white matter microstructure using dMRI in 42,919 individuals (35,741 in the UK Biobank). The dMRIs were summarized into 215 white matter microstructure traits, including 105 measures from tract-specific functional principal component analysis. Genome-wide association analysis identified many novel white matter microstructure associated loci ( P < 2.3 × 10 −10 ). We identified shared genetic influences through genetic correlations between white matter tracts and 62 other complex traits, including stroke, neuropsychiatric disorders (e.g., ADHD, bipolar disorder, major depressive disorder, schizophrenia), cognition, neuroticism, chronotype, as well as non-brain traits. Common variants associated with white matter microstructure alter the function of regulatory elements in glial cells, particularly oligodendrocytes. White matter associated genes were enriched in pathways involved in brain disease pathogenesis, neurodevelopment process, and repair of white matter damage ( P < 1.5 × 10 −8 ). In summary, this large-scale tract-specific study provides a big step forward in understanding the genetic architecture of white matter and its genetic links to a wide spectrum of clinical outcomes.
0
Citation8
0
Save
13

Common variants contribute to intrinsic human brain functional networks

Bingxin Zhao et al.Jul 30, 2020
Abstract The human brain remains active in the absence of explicit tasks and forms networks of correlated activity. Resting-state functional magnetic resonance imaging (rsfMRI) measures brain activity at rest, which has been linked with both cognitive and clinical outcomes. The genetic variants influencing human brain function are largely unknown. Here we utilized rsfMRI from 44,190 individuals of multiple ancestries (37,339 in the UK Biobank) to discover and validate the common genetic variants influencing intrinsic brain activity. We identified hundreds of novel genetic loci associated with intrinsic functional signatures ( P < 2.8 × 10 −11 ), including associations to the central executive, default mode, and salience networks involved in the triple network model of psychopathology. A number of intrinsic brain activity associated loci colocalized with brain disorder GWAS (e.g., Alzheimer’s disease, Parkinson’s disease, schizophrenia) and cognition, such as 19q13.32, 17q21.31, and 2p16.1. Particularly, we detected a colocalization between one (rs429358) of the two variants in the APOE ε4 locus and function of the default mode, central executive, attention, and visual networks. Genetic correlation analysis demonstrated shared genetic influences between brain function and brain structure in the same regions. We also detected significant genetic correlations with 26 other complex traits, such as ADHD, major depressive disorder, schizophrenia, intelligence, education, sleep, subjective well-being, and neuroticism. Common variants associated with intrinsic brain activity were enriched within regulatory element in brain tissues.
13
Citation7
0
Save
0

Transcriptome-wide association analysis of 211 neuroimaging traits identifies new genes for brain structures and yields insights into the gene-level pleiotropy with other complex traits

Bingxin Zhao et al.Nov 15, 2019
Abstract Structural and microstructural variations of human brain are heritable and highly polygenic traits, with hundreds of associated genes founded in recent genome-wide association studies (GWAS). Using gene expression data, transcriptome-wide association studies (TWAS) can prioritize these GWAS findings and also identify novel gene-trait associations. Here we performed TWAS analysis of 211 structural neuroimaging phenotypes in a discovery-validation analysis of six datasets. Using a cross-tissue approach, TWAS discovered 204 associated genes (86 new) exceeding Bonferroni significance threshold of 1.37*10 −8 (adjusted for testing multiple phenotypes) in the UK Biobank (UKB) cohort, and validated 18 TWAS or previous GWAS-detected genes. The TWAS-significant genes of brain structures had been linked to a wide range of complex traits in different domains. Additional TWAS analysis of 11 cognitive and mental health traits detected 69 overlapping significant genes with brain structures, further characterizing the genetic overlaps among these brain-related traits. Through TWAS gene-based polygenic risk scores (PRS) prediction, we found that TWAS PRS gained substantial power in association analysis compared to conventional variant-based PRS, and up to 6.97% of phenotypic variance (p-value=7.56*10 −31 ) in testing datasets can be explained by UKB TWAS-derived PRS. In conclusion, our study illustrates that TWAS can be a powerful supplement to traditional GWAS in imaging genetics studies for gene discovery-validation, genetic co-architecture analysis, and polygenic risk prediction.
0
Citation5
0
Save
0

Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations

Madeline Kowalski et al.Jul 2, 2019
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are still limited. In addition to the limited inclusion of these populations in genetic studies, these populations have more complex linkage disequilibrium structure that may reduce the number of variants associated with a phenotype. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with commercial genome-wide genotyping array data. We demonstrate that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhances gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3 to 6.1-fold increase in the number of well-imputed variants, with 11-34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels, respectively. Impressively, even for extremely rare variants with sample minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~20,000 self-identified African descent individuals and ~23,000 self-identified Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC (p=8.1×10−12) in African populations, rs11549407 with lower HGB (p=1.59×10−12) and HCT (p=1.13×10−9) in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of TOPMed imputation reference panel for identification of novel associations between rare variants and complex traits not previously detected in similar sized genome-wide studies of under-represented African and Hispanic/Latino populations.Author summary Admixed African and Hispanic/Latino populations remain understudied in genome-wide association and fine-mapping studies of complex diseases. These populations have more complex linkage disequilibrium (LD) structure that can impair mapping of variants associated with complex diseases and their risk factors. Genotype imputation represents an approach to improve genome coverage, especially for rare or ancestry-specific variation; however, these understudied populations also have smaller relevant imputation reference panels that need to be expanded to represent their more complex LD patterns. In this study, we leveraged >100,000 phased sequences generated from the multi-ethnic NHLBI TOPMed project to impute in admixed cohorts encompassing ~20,000 individuals of African ancestry (AAs) and ~23,000 Hispanics/Latinos. We demonstrated substantially higher imputation quality for low frequency and rare variants in comparison to the state-of-the-art reference panels (1000 Genomes Project and Haplotype Reference Consortium). Association analyses of ~35 million (AAs) and ~27 million (Hispanics/Latinos) variants passing stringent post-imputation filtering with quantitative hematological traits led to the discovery of associations with two rare variants in the HBB gene; one of these variants was replicated in an independent sample, and the other is known to cause anemia in the homozygous state. By comparison, the same HBB variants would not have been genome-wide significant using other state-of-the-art reference panels due to lower imputation quality. Our findings demonstrate the power of the TOPMed whole genome sequencing data for imputation and subsequent association analysis in admixed African and Hispanic/Latino populations.
0

Heritability of regional brain volumes in large-scale neuroimaging and genetic studies

Bingxin Zhao et al.Oct 25, 2017
Brain genetics is an active research area. The degree to which genetic variants impact variations in brain structure and function remains largely unknown. We examined the heritability of regional brain volumes (p ~ 100) captured by single-nucleotide polymorphisms (SNPs) in UK Biobank (n ~ 9000). We found that regional brain volumes are highly heritable in this study population. We observed omni-genic impact across the genome as well as enrichment of SNPs in active chromatin regions. Principal components derived from regional volume data are also highly heritable, but the amount of variance in brain volume explained by the component did not seem to be related to its heritability. Heritability estimates vary substantially across large-scale functional networks and brain regions. The variation in heritability across regions was not related to measurement reliability. Heritability estimates exhibit a symmetric pattern across left and right hemispheres and are consistent in females and males. Our main findings in UK Biobank are consistent with those in Alzheimers Disease Neuroimaging Initiative (n ~ 1100), Philadelphia Neurodevelopmental Cohort (n ~ 600), and Pediatric Imaging, Neurocognition, and Genetics (n ~ 500) datasets, with more stable estimates in UK Biobank.
0

GWAS of 19,629 individuals identifies novel genetic variants for regional brain volumes and refines their genetic co-architecture with cognitive and mental health traits

Bingxin Zhao et al.Mar 25, 2019
Volumetric variations of human brain are heritable and are associated with many brain-related complex traits. Here we performed genome-wide association studies (GWAS) and post-GWAS analyses of 101 brain volumetric phenotypes using the UK Biobank (UKB) sample including 19,629 participants. GWAS identified 287 independent SNPs exceeding genome-wide significance threshold of 4.9*10-10, adjusted for testing multiple phenotypes. Gene-based association study found 142 associated genes (113 new) and functional gene mapping analysis linked 122 more genes. Many of the discovered genetic variants have previously been implicated with cognitive and mental health traits (such as cognitive performance, education, mental disease/disorders), and significant genetic correlations were detected for 29 pairs of traits. The significant SNPs discovered in the UKB sample were supported by a joint analysis with other four independent studies (total sample size 2,192), and we performed a meta-analysis of five samples to provide GWAS summary statistics with sample size larger than 20,000. Using genome-wide polygenic risk scores prediction, up to 4.36% of phenotypic variance (p-value=2.97*10-22) in the four independent studies can be explained by the UKB GWAS results. In conclusion, our study identifies many new genetic variants at SNP, locus and gene levels and advances our understanding of the pleiotropy and genetic co-architecture between brain volumes and other traits.
0

Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap with cognitive and mental health traits (n=17,706)

Bingxin Zhao et al.Mar 25, 2018
Individual variations of white matter (WM) tracts are known to be associated with various cognitive and neuropsychiatric traits. Diffusion tensor imaging (DTI) and genome-wide single-nucleotide polymorphism (SNP) data from 17,706 UK Biobank participants offer opportunity to identify novel genetic variants of WM tracts and explore the genetic overlap with other brain-related complex traits. We analyzed the genetic architecture of 110 tract-based DTI parameters, carried out genome-wide association studies (GWAS) and performed post-GWAS analyses, including association lookups, gene-based association analysis, functional gene mapping, and genetic correlation estimation. DTI parameters are substantially heritable for all WM tracts (mean heritability 48.7%). We observed a highly polygenic architecture of genetic influence across the genome (p-value=1.67*10-05) as well as the enrichment of genetic effects for active SNPs annotated by central nervous system cells (p-value=8.95*10-12). GWAS identified 213 independent significant SNPs associated with 90 DTI parameters (696 SNP-level and 205 locus-level associations; p-value<4.5*10-10, adjusted for testing multiple phenotypes). Gene-based association study prioritized 112 significant genes, most of which are novel. More importantly, association lookups found that many of the novel SNPs and genes of DTI parameters have previously been implicated with cognitive and mental health traits. The present study identifies many new genetic variants at SNP, locus and gene levels for integrity of brain WM tracts and provides the overview of pleiotropy with cognitive and mental health traits.