JN
Jared Nielsen
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
1,796
h-index:
23
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An open science resource for establishing reliability and reproducibility in functional connectomics

Xi-Nian Zuo et al.Dec 8, 2014
Abstract Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included.
0

Functional connectivity magnetic resonance imaging classification of autism

Jeffrey Anderson et al.Oct 17, 2011
Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear whether functional connectivity is sufficiently robust to be used as a diagnostic or prognostic metric in individual patients with autism. We obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the entire grey matter (26.4 million connections) in a well-characterized set of 40 male adolescents and young adults with autism and 40 age-, sex- and IQ-matched typically developing subjects. A single resting state blood oxygen level-dependent scan of 8 min was used for the classification in each subject. A leave-one-out classifier successfully distinguished autism from control subjects with 83% sensitivity and 75% specificity for a total accuracy of 79% (P = 1.1 × 10−7). In subjects <20 years of age, the classifier performed at 89% accuracy (P = 5.4 × 10−7). In a replication dataset consisting of 21 individuals from six families with both affected and unaffected siblings, the classifier performed at 71% accuracy (91% accuracy for subjects <20 years of age). Classification scores in subjects with autism were significantly correlated with the Social Responsiveness Scale (P = 0.05), verbal IQ (P = 0.02) and the Autism Diagnostic Observation Schedule-Generic's combined social and communication subscores (P = 0.05). An analysis of informative connections demonstrated that region of interest pairs with strongest correlation values were most abnormal in autism. Negatively correlated region of interest pairs showed higher correlation in autism (less anticorrelation), possibly representing weaker inhibitory connections, particularly for long connections (Euclidean distance >10 cm). Brain regions showing greatest differences included regions of the default mode network, superior parietal lobule, fusiform gyrus and anterior insula. Overall, classification accuracy was better for younger subjects, with differences between autism and control subjects diminishing after 19 years of age. Classification scores of unaffected siblings of individuals with autism were more similar to those of the control subjects than to those of the subjects with autism. These findings indicate feasibility of a functional connectivity magnetic resonance imaging diagnostic assay for autism.
0

Longitudinal changes in cortical thickness in autism and typical development

Brandon Zielinski et al.Apr 22, 2014
The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3–36 years) and 60 males with typical development (mean age = 18 years; range 4–39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and paracentral, lateral orbitofrontal, and lateral occipital regions. We suggest that abnormal cortical development in autism spectrum disorders undergoes three distinct phases: accelerated expansion in early childhood, accelerated thinning in later childhood and adolescence, and decelerated thinning in early adulthood. Moreover, cortical thickness abnormalities in autism spectrum disorders are region-specific, vary with age, and may remain dynamic well into adulthood.
0
Citation344
0
Save
0

Multisite functional connectivity MRI classification of autism: ABIDE results

Jared Nielsen et al.Jan 1, 2013
Systematic differences in functional connectivity MRI metrics have been consistently observed in autism, with predominantly decreased cortico-cortical connectivity. Previous attempts at single subject classification in high-functioning autism using whole brain point-to-point functional connectivity have yielded about 80% accurate classification of autism vs. control subjects across a wide age range. We attempted to replicate the method and results using the Autism Brain Imaging Data Exchange (ABIDE) including resting state fMRI data obtained from 964 subjects and 16 separate international sites.For each of 964 subjects, we obtained pairwise functional connectivity measurements from a lattice of 7266 regions of interest covering the gray matter (26.4 million "connections") after preprocessing that included motion and slice timing correction, coregistration to an anatomic image, normalization to standard space, and voxelwise removal by regression of motion parameters, soft tissue, CSF, and white matter signals. Connections were grouped into multiple bins, and a leave-one-out classifier was evaluated on connections comprising each set of bins. Age, age-squared, gender, handedness, and site were included as covariates for the classifier.Classification accuracy significantly outperformed chance but was much lower for multisite prediction than for previous single site results. As high as 60% accuracy was obtained for whole brain classification, with the best accuracy from connections involving regions of the default mode network, parahippocampaland fusiform gyri, insula, Wernicke Area, and intraparietal sulcus. The classifier score was related to symptom severity, social function, daily living skills, and verbal IQ. Classification accuracy was significantly higher for sites with longer BOLD imaging times.Multisite functional connectivity classification of autism outperformed chance using a simple leave-one-out classifier, but exhibited poorer accuracy than for single site results. Attempts to use multisite classifiers will likely require improved classification algorithms, longer BOLD imaging times, and standardized acquisition parameters for possible future clinical utility.
0

An Evaluation of the Left-Brain vs. Right-Brain Hypothesis with Resting State Functional Connectivity Magnetic Resonance Imaging

Jared Nielsen et al.Aug 14, 2013
Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.
0

Precision Brain Morphometry: Feasibility and Opportunities of Extreme Rapid Scans

Jared Nielsen et al.Jan 26, 2019
The traditional approach to achieve optimal structural brain morphometry is to increase spatial resolution and maintain a high signal-to-noise ratio within a single scanning session using long acquisitions. Here we explore alternative approaches that use multiple rapid structural scans and averaging to achieve stable morphometric estimates. Effects of sequence, resolution, acceleration, and number of scans within- and between-sessions were varied across six studies that included 1,025 scans. Single ~1-min magnetization-prepared rapid gradient echo (MP-RAGE) scans that use wave-controlled aliasing in parallel imaging (Wave-CAIPI) encoding yield morphometric estimates nearly as accurate as those obtained with traditional long scans. Averaging estimates from multiple rapid scans reduces error below traditional approaches using less total acquisition time. Test-retest reliability within- and between-sessions for ~2 min multi-echo MP-RAGE scans revealed that a source of error is the idiosyncratic positioning of the subject's head between sessions. Cluster scanning over multiple tightly-spaced sessions mitigates this effect and achieves cortical thickness estimates with less than 10μm global (30μm regional) error. Test-retest error for the hippocampus falls below 0.6%. Additional sources of error include coil heating when scans are acquired rapidly within the same session and change in console software between sessions. Rapid acquisitions allow novel experimental designs that can use cluster scanning to achieve precise longitudinal assessment within the individual, build in robustness by affording redundant acquisitions, and reduce the structural scanning burden to a minute when anatomical registration is the goal. The field should consider replacing long structural scans with fast alternatives.
0

Parsing Brain Network Specialization: A Replication and Expansion of Wang et al. (2014)

Madeline Peterson et al.Feb 14, 2024
Abstract One organizing principle of the human brain is hemispheric specialization, or the dominance of a specific function or cognitive process in one hemisphere or the other. Previously, Wang et al. (2014) identified networks putatively associated with language and attention as being specialized to the left and right hemispheres, respectively; and a dual-specialization of the executive control network. However, it remains unknown which networks are specialized when specialization is examined within individuals using a higher resolution parcellation, as well as which connections are contributing the most to a given network’s specialization. In the present study, we estimated network specialization across three datasets using the autonomy index and a novel method of deconstructing network specialization. After examining the reliability of these methods as implemented on an individual level, we addressed two hypotheses. First, we hypothesized that the most specialized networks would include those associated with language, visuospatial attention, and executive control. Second, we hypothesized that within-network contributions to specialization would follow a within-between network gradient or a specialization gradient. We found that the majority of networks exhibited greater within-hemisphere connectivity than between-hemisphere connectivity. Among the most specialized networks were networks associated with language, attention, and executive control. Additionally, we found that the greatest network contributions were within-network, followed by those from specialized networks. Significance Statement Hemispheric specialization is a characteristic of brain organization that describes when a function draws on one hemisphere of the brain more than the other. We sought to identify the most specialized brain networks within individuals, as well as which connections contribute the most to a given network’s specialization. Among the most specialized networks were those associated with language, attention, and executive control. Unexpectedly, we also identified networks associated with emotion/memory and theory of mind as highly specialized. Additionally, we found support for guiding principles of brain organization generally, such that within-network connections contributed most to a given network’s specialization followed by connections from other specialized networks. These results have implications for identifying potential variations of network contributions in individuals with neurodevelopmental conditions.
0

Evidence for a Compensatory Relationship between Left- and Right-Lateralized Brain Networks

Madeline Peterson et al.Jan 1, 2023
The two hemispheres of the human brain are functionally asymmetric. At the network level, the language network exhibits left-hemisphere lateralization. While this asymmetry is widely replicated, the extent to which other functional networks demonstrate lateralization remains a subject of investigation. Additionally, it is unknown how the lateralization of one functional network may affect the lateralization of other networks within individuals. We quantified lateralization for each of 17 networks by computing the relative surface area on the left and right cerebral hemispheres. After examining the ecological, convergent, and external validity and test-retest reliability of this surface area-based measure of lateralization, we addressed two hypotheses across multiple datasets (Human Connectome Project = 553, Human Connectome Project-Development = 343, Natural Scenes Dataset = 8). First, we hypothesized that networks associated with language, visuospatial attention, and executive control would show the greatest lateralization. Second, we hypothesized that relationships between lateralized networks would follow a dependent relationship such that greater left-lateralization of a network would be associated with greater right-lateralization of a different network within individuals, and that this pattern would be systematic across individuals. A language network was among the three networks identified as being significantly left-lateralized, and attention and executive control networks were among the five networks identified as being significantly right-lateralized. Next, correlation matrices, an exploratory factor analysis, and confirmatory factor analyses were used to test the second hypothesis and examine the organization of lateralized networks. We found general support for a dependent relationship between highly left- and right-lateralized networks, meaning that across subjects, greater left lateralization of a given network (such as a language network) was linked to greater right lateralization of another network (such as a ventral attention/salience network) and vice versa. These results further our understanding of brain organization at the macro-scale network level in individuals, carrying specific relevance for neurodevelopmental conditions characterized by disruptions in lateralization such as autism and schizophrenia.
0

A neural network for religious fundamentalism derived from patients with brain lesions

Mark Ferguson et al.Dec 29, 2023
Religious fundamentalism, characterized by rigid adherence to a set of beliefs putatively revealing inerrant truths, is ubiquitous across cultures and has a global impact on society. Understanding the psychological and neurobiological processes producing religious fundamentalism may inform a variety of scientific, sociological, and cultural questions. Research indicates that brain damage can alter religious fundamentalism. However, the precise brain regions involved with these changes remain unknown. Here, we analyzed brain lesions associated with varying levels of religious fundamentalism in two large datasets from independent laboratories. Lesions associated with greater fundamentalism were connected to a specific brain network with nodes in the right orbitofrontal, dorsolateral prefrontal, and inferior parietal lobes. This fundamentalism network was strongly right hemisphere lateralized and highly reproducible across the independent datasets (r = 0.82) with cross-validations between datasets. To explore the relationship of this network to lesions previously studied by our group, we tested for similarities to twenty-one lesion-induced conditions. Lesions associated with confabulation and criminal behavior showed a similar connectivity pattern as lesions associated with greater fundamentalism. Moreover, lesions associated with poststroke pain showed a similar connectivity pattern as lesions associated with lower fundamentalism. These findings are consistent with hemispheric specializations in reasoning and lend insight into previously observed epidemiological associations with fundamentalism, such as cognitive rigidity and outgroup hostility.
0

Reduced Lateralization of Multiple Functional Brain Networks in Autistic Males

Madeline Peterson et al.Dec 18, 2023
Abstract Background Autism spectrum disorder has been linked to a variety of organizational and developmental deviations in the brain. One such organizational difference involves hemispheric lateralization, which may be localized to language-relevant regions of the brain or distributed more broadly. Methods In the present study, we estimated brain hemispheric lateralization in autism based on each participant’s unique functional neuroanatomy rather than relying on group-averaged data. Additionally, we explored potential relationships between the lateralization of the language network and behavioral phenotypes including verbal ability, language delay, and autism symptom severity. We hypothesized that differences in hemispheric asymmetries in autism would be limited to the language network, with the alternative hypothesis of pervasive differences in lateralization. We tested this and other hypotheses by employing a cross-sectional dataset of 118 individuals (48 autistic, 70 neurotypical). Using resting-state fMRI, we generated individual network parcellations and estimated network asymmetries using a surface area-based approach. A series of multiple regressions were then used to compare network asymmetries for eight significantly lateralized networks between groups. Results We found significant group differences in lateralization for the left-lateralized Language (d = −0.89), right-lateralized Salience/Ventral Attention-A (d = 0.55), and right-lateralized Control-B (d = 0.51) networks, with the direction of these group differences indicating less asymmetry in autistic individuals. These differences were robust across different datasets from the same participants. Furthermore, we found that language delay stratified language lateralization, with the greatest group differences in language lateralization occurring between autistic individuals with language delay and neurotypical individuals. Limitations The generalizability of our findings is restricted due to the male-only sample and greater representation of individuals with high verbal and cognitive performance. Conclusions These findings evidence a complex pattern of functional lateralization differences in autism, extending beyond the Language network to the Salience/Ventral Attention-A and Control-B networks, yet not encompassing all networks, indicating a selective divergence rather than a pervasive one. Furthermore, a differential relationship was identified between Language network lateralization and specific symptom profiles (namely, language delay) of autism.