ES
Eric Smith
Author with expertise in Genetic Basis of Primary Immunodeficiency Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
247
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

SMARCA4 regulates spatially restricted metabolic plasticity in 3D multicellular tissue

Kateřina Čermáková et al.Mar 22, 2021
Abstract SWI/SNF and related chromatin remodeling complexes act as tissue-specific tumor suppressors and are frequently inactivated in different cancers. Although many regulatory activities of SWI/SNF have been identified using 2D cell culture, the effects of SWI/SNF alterations in more complex 3D tissues have remained poorly understood. Here we employed 3D cell culture conditions that yield transcriptomic states mirroring primary lung adenocarcinoma (LUAD) specimens better than 2D culture. By analyzing spatial patterns of gene expression and DNA accessibility in 3D spheroids using single-cell RNA-seq and ATAC-seq, we find that the SWI/SNF ATPase SMARCA4 (BRG1) induces state-specific changes to DNA accessibility that influence spatially heterogeneous expression patterns and metabolism. In 3D conditions, SMARCA4 promotes accessibility for AP-1 transcription factors, including ATF3, a regulator of metabolism and repressor of NRF2 antioxidant signaling. These changes reduce expression of SLC7A11 in a distinct portion of cells, which sensitizes A549 spheroids to cell death via ferroptosis under oxidizing conditions. Consistent with these results, we find that SMARCA4 alterations are associated with derepression of NRF2 targets in human tumors independently of NRF2/KEAP1 status. Our work reveals new 3D-specific features and unanticipated spatial complexity associated with chromatin remodeling in multicellular tissues.
2
Citation2
0
Save
0

Dynamics of transcription-dependent H3K36me3 marking by the SETD2:IWS1:SPT6 ternary complex

Kateřina Čermáková et al.May 14, 2019
SETD2 contributes to gene expression by marking gene bodies with H3K36me3, which is thought to assist in the concentration of transcription machinery at the small portion of the coding genome. Despite extensive genome-wide data revealing the precise localization of H3K36me3 over gene bodies, the physical basis for the accumulation, maintenance, and sharp borders of H3K36me3 over these sites remains rudimentary. Here we propose a model of H3K36me3 marking based on stochastic transcription-dependent placement and transcription-independent spreading. Our analysis of the spatial distributions and dynamic features of these marks indicates that transcription-dependent placement dominates the establishment of H3K36me3 domains compared to transcription-independent spreading processes, and that turnover of H3K36me3 limits its capacity for epigenetic memory. By adding additional terms for asymmetric histone turnover occurring at transcription start sites, our model provides a remarkably accurate representation of H3K36me3 levels and dynamics over gene bodies. Furthermore, we validate our findings by revealing that loss of SPT6 impairs the transcription-coupled activity of the SETD2:IWS1:SPT6 ternary complex, thereby reducing the tight correlation between transcription and H3K36me3 levels at gene bodies.