SY
Stuart Young
Author with expertise in Global Methane Emissions and Impacts
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
4,458
h-index:
25
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements

Mark Vaughan et al.May 5, 2009
Abstract Accurate knowledge of the vertical and horizontal extent of clouds and aerosols in the earth’s atmosphere is critical in assessing the planet’s radiation budget and for advancing human understanding of climate change issues. To retrieve this fundamental information from the elastic backscatter lidar data acquired during the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a selective, iterated boundary location (SIBYL) algorithm has been developed and deployed. SIBYL accomplishes its goals by integrating an adaptive context-sensitive profile scanner into an iterated multiresolution spatial averaging scheme. This paper provides an in-depth overview of the architecture and performance of the SIBYL algorithm. It begins with a brief review of the theory of target detection in noise-contaminated signals, and an enumeration of the practical constraints levied on the retrieval scheme by the design of the lidar hardware, the geometry of a space-based remote sensing platform, and the spatial variability of the measurement targets. Detailed descriptions are then provided for both the adaptive threshold algorithm used to detect features of interest within individual lidar profiles and the fully automated multiresolution averaging engine within which this profile scanner functions. The resulting fusion of profile scanner and averaging engine is specifically designed to optimize the trade-offs between the widely varying signal-to-noise ratio of the measurements and the disparate spatial resolutions of the detection targets. Throughout the paper, specific algorithm performance details are illustrated using examples drawn from the existing CALIPSO dataset. Overall performance is established by comparisons to existing layer height distributions obtained by other airborne and space-based lidars.
0
Paper
Citation640
0
Save
0

The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description

Stuart Young et al.Jan 12, 2009
Abstract This work describes the algorithms used for the fully automated retrieval of profiles of particulate extinction coefficients from the attenuated backscatter data acquired by the lidar on board the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft. The close interaction of the Hybrid Extinction Retrieval Algorithms (HERA) with the preceding processes that detect and classify atmospheric features (i.e., cloud and aerosol layers) is described within the context of the analysis of measurements from scenes of varying complexity. Two main components compose HERA: a top-level algorithm that selects the analysis pathway, the order of processing, and the analysis parameters, depending on the nature and spatial extent of the atmospheric features to be processed; and a profile solver or “extinction engine,” whose task it is to retrieve profiles of particulate extinction and backscatter coefficients from specified sections of an atmospheric scene defined by the top-level algorithm. The operation of these components is described using synthetic data derived from Lidar In Space Technology Experiment (LITE) measurements. The performance of the algorithms is illustrated using CALIPSO measurements acquired during the mission on 1 January 2007.
0
Paper
Citation458
0
Save
0

Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products

Mark Vaughan et al.Nov 4, 2004
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite will be launched in April of 2005, and will make continuous measurements of the Earth's atmosphere for the following three years. Retrieving the spatial and optical properties of clouds and aerosols from the CALIPSO lidar backscatter data will be confronted by a number of difficulties that are not faced in the analysis of ground-based data. Among these are the very large distance from the target, the high speed at which the satellite traverses the ground track, and the ensuing low signal-to-noise ratios that result from the mass and power restrictions imposed on space-based platforms. In this work we describe an integrated analysis scheme that employs a nested, multi-grid averaging technique designed to optimize tradeoffs between spatial resolution and signal-to-noise ratio. We present an overview of the three fundamental retrieval algorithms (boundary location, feature classification, and optical properties analysis), and illustrate their interconnections using data product examples that include feature top and base altitudes, feature type (i.e., cloud or aerosol), and layer optical depths.
0
Paper
Citation393
0
Save
0

CALIPSO/CALIOP Cloud Phase Discrimination Algorithm

Yongxiang Hu et al.Jun 3, 2009
Abstract The current cloud thermodynamic phase discrimination by Cloud-Aerosol Lidar Pathfinder Satellite Observations (CALIPSO) is based on the depolarization of backscattered light measured by its lidar [Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP)]. It assumes that backscattered light from ice crystals is depolarizing, whereas water clouds, being spherical, result in minimal depolarization. However, because of the relationship between the CALIOP field of view (FOV) and the large distance between the satellite and clouds and because of the frequent presence of oriented ice crystals, there is often a weak correlation between measured depolarization and phase, which thereby creates significant uncertainties in the current CALIOP phase retrieval. For water clouds, the CALIOP-measured depolarization can be large because of multiple scattering, whereas horizontally oriented ice particles depolarize only weakly and behave similarly to water clouds. Because of the nonunique depolarization–cloud phase relationship, more constraints are necessary to uniquely determine cloud phase. Based on theoretical and modeling studies, an improved cloud phase determination algorithm has been developed. Instead of depending primarily on layer-integrated depolarization ratios, this algorithm differentiates cloud phases by using the spatial correlation of layer-integrated attenuated backscatter and layer-integrated particulate depolarization ratio. This approach includes a two-step process: 1) use of a simple two-dimensional threshold method to provide a preliminary identification of ice clouds containing randomly oriented particles, ice clouds with horizontally oriented particles, and possible water clouds and 2) application of a spatial coherence analysis technique to separate water clouds from ice clouds containing horizontally oriented ice particles. Other information, such as temperature, color ratio, and vertical variation of depolarization ratio, is also considered. The algorithm works well for both the 0.3° and 3° off-nadir lidar pointing geometry. When the lidar is pointed at 0.3° off nadir, half of the opaque ice clouds and about one-third of all ice clouds have a significant lidar backscatter contribution from specular reflections from horizontally oriented particles. At 3° off nadir, the lidar backscatter signals for roughly 30% of opaque ice clouds and 20% of all observed ice clouds are contaminated by horizontally oriented crystals.
0
Paper
Citation331
0
Save