DB
Dmitri Beglov
Author with expertise in Protein Structure Prediction and Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(90% Open Access)
Cited by:
5,981
h-index:
32
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

How good is automated protein docking?

Dima Kozakov et al.Aug 28, 2013
ABSTRACT The protein docking server ClusPro has been participating in critical assessment of prediction of interactions (CAPRI) since its introduction in 2004. This article evaluates the performance of ClusPro 2.0 for targets 46–58 in Rounds 22–27 of CAPRI. The analysis leads to a number of important observations. First, ClusPro reliably yields acceptable or medium accuracy models for targets of moderate difficulty that have also been successfully predicted by other groups, and fails only for targets that have few acceptable models submitted. Second, the quality of automated docking by ClusPro is very close to that of the best human predictor groups, including our own submissions. This is very important, because servers have to submit results within 48 h and the predictions should be reproducible, whereas human predictors have several weeks and can use any type of information. Third, while we refined the ClusPro results for manual submission by running computationally costly Monte Carlo minimization simulations, we observed significant improvement in accuracy only for two of the six complexes correctly predicted by ClusPro. Fourth, new developments, not seen in previous rounds of CAPRI, are that the top ranked model provided by ClusPro was acceptable or better quality for all these six targets, and that the top ranked model was also the highest quality for five of the six, confirming that ranking models based on cluster size can reliably identify the best near‐native conformations. Proteins 2013; 81:2159–2166. © 2013 Wiley Periodicals, Inc.
0

The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins

Dima Kozakov et al.Apr 9, 2015
This protocol describes the FTMap family of web servers for determining and characterizing ligand-binding hot spots of macromolecules, including FTSite for predicting ligand-binding sites, FTFlex for accounting for side chain flexibility, FTMap/param for parameterizing additional probes, and FTDyn for mapping ensembles of protein structures. FTMap is a computational mapping server that identifies binding hot spots of macromolecules—i.e., regions of the surface with major contributions to the ligand-binding free energy. To use FTMap, users submit a protein, DNA or RNA structure in PDB (Protein Data Bank) format. FTMap samples billions of positions of small organic molecules used as probes, and it scores the probe poses using a detailed energy expression. Regions that bind clusters of multiple probe types identify the binding hot spots in good agreement with experimental data. FTMap serves as the basis for other servers, namely FTSite, which is used to predict ligand-binding sites, FTFlex, which is used to account for side chain flexibility, FTMap/param, used to parameterize additional probes and FTDyn, for mapping ensembles of protein structures. Applications include determining the druggability of proteins, identifying ligand moieties that are most important for binding, finding the most bound-like conformation in ensembles of unliganded protein structures and providing input for fragment-based drug design. FTMap is more accurate than classical mapping methods such as GRID and MCSS, and it is much faster than the more-recent approaches to protein mapping based on mixed molecular dynamics. By using 16 probe molecules, the FTMap server finds the hot spots of an average-size protein in <1 h. As FTFlex performs mapping for all low-energy conformers of side chains in the binding site, its completion time is proportionately longer.
0

New additions to the ClusPro server motivated by CAPRI

Sándor Vajda et al.Dec 10, 2016
ABSTRACT The heavily used protein–protein docking server ClusPro performs three computational steps as follows: (1) rigid body docking, (2) RMSD based clustering of the 1000 lowest energy structures, and (3) the removal of steric clashes by energy minimization. In response to challenges encountered in recent CAPRI targets, we added three new options to ClusPro. These are (1) accounting for small angle X‐ray scattering data in docking; (2) considering pairwise interaction data as restraints; and (3) enabling discrimination between biological and crystallographic dimers. In addition, we have developed an extremely fast docking algorithm based on 5D rotational manifold FFT, and an algorithm for docking flexible peptides that include known sequence motifs. We feel that these developments will further improve the utility of ClusPro. However, CAPRI emphasized several shortcomings of the current server, including the problem of selecting the right energy parameters among the five options provided, and the problem of selecting the best models among the 10 generated for each parameter set. In addition, results convinced us that further development is needed for docking homology models. Finally, we discuss the difficulties we have encountered when attempting to develop a refinement algorithm that would be computationally efficient enough for inclusion in a heavily used server. Proteins 2017; 85:435–444. © 2016 Wiley Periodicals, Inc.
0

Fragment-based identification of druggable ‘hot spots’ of proteins using Fourier domain correlation techniques

Ryan Brenke et al.Jan 28, 2009
The binding sites of proteins generally contain smaller regions that provide major contributions to the binding free energy and hence are the prime targets in drug design. Screening libraries of fragment-sized compounds by NMR or X-ray crystallography demonstrates that such 'hot spot' regions bind a large variety of small organic molecules, and that a relatively high 'hit rate' is predictive of target sites that are likely to bind drug-like ligands with high affinity. Our goal is to determine the 'hot spots' computationally rather than experimentally.We have developed the FTMAP algorithm that performs global search of the entire protein surface for regions that bind a number of small organic probe molecules. The search is based on the extremely efficient fast Fourier transform (FFT) correlation approach which can sample billions of probe positions on dense translational and rotational grids, but can use only sums of correlation functions for scoring and hence is generally restricted to very simple energy expressions. The novelty of FTMAP is that we were able to incorporate and represent on grids a detailed energy expression, resulting in a very accurate identification of low-energy probe clusters. Overlapping clusters of different probes are defined as consensus sites (CSs). We show that the largest CS is generally located at the most important subsite of the protein binding site, and the nearby smaller CSs identify other important subsites. Mapping results are presented for elastase whose structure has been solved in aqueous solutions of eight organic solvents, and we show that FTMAP provides very similar information. The second application is to renin, a long-standing pharmaceutical target for the treatment of hypertension, and we show that the major CSs trace out the shape of the first approved renin inhibitor, aliskiren.FTMAP is available as a server at http://ftmap.bu.edu/.
0

How proteins bind macrocycles

Elizabeth Villar et al.Jul 16, 2014
Macrocycles have the potential to act on currently undruggable targets, but their discovery thus far has been unsystematic. A physicochemical analysis of all nonredundant co-crystal structures now sets out guidelines for macrocycle development. The potential utility of synthetic macrocycles (MCs) as drugs, particularly against low-druggability targets such as protein-protein interactions, has been widely discussed. There is little information, however, to guide the design of MCs for good target protein–binding activity or bioavailability. To address this knowledge gap, we analyze the binding modes of a representative set of MC–protein complexes. The results, combined with consideration of the physicochemical properties of approved macrocyclic drugs, allow us to propose specific guidelines for the design of synthetic MC libraries with structural and physicochemical features likely to favor strong binding to protein targets as well as good bioavailability. We additionally provide evidence that large, natural product–derived MCs can bind targets that are not druggable by conventional, drug-like compounds, supporting the notion that natural product–inspired synthetic MCs can expand the number of proteins that are druggable by synthetic small molecules.
0

Achieving reliability and high accuracy in automated protein docking: Cluspro, PIPER, SDU, and stability analysis in CAPRI rounds 13–19

Dima Kozakov et al.Jul 23, 2010
Abstract Our approach to protein—protein docking includes three main steps. First, we run PIPER, a rigid body docking program based on the Fast Fourier Transform (FFT) correlation approach, extended to use pairwise interactions potentials. Second, the 1000 best energy conformations are clustered, and the 30 largest clusters are retained for refinement. Third, the stability of the clusters is analyzed by short Monte Carlo simulations, and the structures are refined by the medium‐range optimization method SDU. The first two steps of this approach are implemented in the ClusPro 2.0 protein–protein docking server. Despite being fully automated, the last step is computationally too expensive to be included in the server. When comparing the models obtained in CAPRI rounds 13–19 by ClusPro, by the refinement of the ClusPro predictions and by all predictor groups, we arrived at three conclusions. First, for the first time in the CAPRI history, our automated ClusPro server was able to compete with the best human predictor groups. Second, selecting the top ranked models, our current protocol reliably generates high‐quality structures of protein–protein complexes from the structures of separately crystallized proteins, even in the absence of biological information, provided that there is limited backbone conformational change. Third, despite occasional successes, homology modeling requires further improvement to achieve reliable docking results. Proteins 2010. © 2010 Wiley‐Liss, Inc.
0

Structural conservation of druggable hot spots in protein–protein interfaces

Dima Kozakov et al.Aug 1, 2011
Despite the growing number of examples of small-molecule inhibitors that disrupt protein–protein interactions (PPIs), the origin of druggability of such targets is poorly understood. To identify druggable sites in protein–protein interfaces we combine computational solvent mapping, which explores the protein surface using a variety of small “probe” molecules, with a conformer generator to account for side-chain flexibility. Applications to unliganded structures of 15 PPI target proteins show that the druggable sites comprise a cluster of binding hot spots, distinguishable from other regions of the protein due to their concave topology combined with a pattern of hydrophobic and polar functionality. This combination of properties confers on the hot spots a tendency to bind organic species possessing some polar groups decorating largely hydrophobic scaffolds. Thus, druggable sites at PPI are not simply sites that are complementary to particular organic functionality, but rather possess a general tendency to bind organic compounds with a variety of structures, including key side chains of the partner protein. Results also highlight the importance of conformational adaptivity at the binding site to allow the hot spots to expand to accommodate a ligand of drug-like dimensions. The critical components of this adaptivity are largely local, involving primarily low energy side-chain motions within 6 Å of a hot spot. The structural and physicochemical signature of druggable sites at PPI interfaces is sufficiently robust to be detectable from the structure of the unliganded protein, even when substantial conformational adaptation is required for optimal ligand binding.