MG
M. Gorodetsky
Author with expertise in Silicon Photonics Technology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(75% Open Access)
Cited by:
7,337
h-index:
53
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Temporal solitons in optical microresonators

Tobias Herr et al.Dec 20, 2013
Dissipative solitons can emerge in a wide variety of dissipative nonlinear systems throughout the fields of optics, medicine or biology. Dissipative solitons can also exist in Kerr-nonlinear optical resonators and rely on the double balance between parametric gain and resonator loss on the one hand and nonlinearity and diffraction or dispersion on the other hand. Mathematically these solitons are solution to the Lugiato-Lefever equation and exist on top of a continuous wave (cw) background. Here we report the observation of temporal dissipative solitons in a high-Q optical microresonator. The solitons are spontaneously generated when the pump laser is tuned through the effective zero detuning point of a high-Q resonance, leading to an effective red-detuned pumping. Red-detuned pumping marks a fundamentally new operating regime in nonlinear microresonators. While usually unstablethis regime acquires unique stability in the presence of solitons without any active feedback on the system. The number of solitons in the resonator can be controlled via the pump laser detuning and transitions to and between soliton states are associated with discontinuous steps in the resonator transmission. Beyond enabling to study soliton physics such as soliton crystals our observations open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of broadband laser gain media. The single soliton states correspond in the frequency domain to low-noise optical frequency combs with smooth spectral envelopes, critical to applications in broadband spectroscopy, telecommunications, astronomy and low phase-noise microwave generation.
0

Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators

Hairun Guo et al.Sep 26, 2016
Dissipative temporal Kerr solitons in optical microresonators enable to convert a continuous wave laser into a train of femtosecond pulses. Of particular interest are single soliton states, whose $\mathrm{sech}^{2}$ spectral envelope provides a spectrally smooth and low noise optical frequency comb, and that recently have been generated in crystalline, silica, and silicon-nitride resonators. Here, we study the dynamics of multiple soliton states containing ${N}$ solitons and report the discovery of a novel, yet simple mechanism which makes it possible to reduce deterministically the number of solitons, one by one, i.e. ${N\! \to\! N\!-\!1\! \to\! \dots \!\to\! 1}$. By applying weak phase modulation, we directly characterize the soliton state via a double-resonance response. The dynamical probing demonstrates that transitions occur in a predictable way, and thereby enables us to map experimentally the underlying multi-stability diagram of dissipative Kerr solitons. These measurements reveal the "lifted" degeneracy of soliton states as a result of the power-dependent thermal shift of the cavity resonance (i.e. the thermal nonlinearity). The experimental results are in agreement with theoretical and numerical analysis that incorporate the thermal nonlinearity. By studying two different microresonator platforms (integrated $\mathrm{Si_{3}N_{4}}$ microresonators and crystalline $\mathrm{MgF_{2}}$ resonators) we confirm that these effects have a universal nature. Beyond elucidating the fundamental dynamical properties of dissipative Kerr solitons the observed phenomena are also of practical relevance, providing a manipulation toolbox which enables to sequentially reduce, monitor and stabilize the number ${N}$ of solitons, preventing it from decay. Achieving reliable single soliton operation and stabilization in this manner in optical resonators is imperative to applications.
0

Octave Spanning Tunable Frequency Comb from a Microresonator

Pascal Del’Haye et al.Aug 1, 2011
Optical frequency combs have revolutionized the field of frequency metrology within the last decade and have become enabling tools for atomic clocks, gas sensing and astrophysical spectrometer calibration. The rapidly increasing number of applications has heightened interest in more compact comb generators. Optical microresonator based comb generators bear promise in this regard. Critical to their future use as 'frequency markers', is however the absolute frequency stabilization of the optical comb spectrum. A powerful technique for this stabilization is self-referencing, which requires a spectrum that spans a full octave, i.e. a factor of two in frequency. In the case of mode locked lasers, overcoming the limited bandwidth has become possible only with the advent of photonic crystal fibres for supercontinuum generation. Here, we report for the first time the generation of an octave-spanning frequency comb directly from a toroidal microresonator on a silicon chip. The comb spectrum covers the wavelength range from 990 nm to 2170 nm and is retrieved from a continuous wave laser interacting with the modes of an ultra high Q microresonator, without relying on external broadening. Full tunability of the generated frequency comb over a bandwidth exceeding an entire free spectral range is demonstrated. This allows positioning of a frequency comb mode to any desired frequency within the comb bandwidth. The ability to derive octave spanning spectra from microresonator comb generators represents a key step towards achieving a radio-frequency to optical link on a chip, which could unify the fields of metrology with micro- and nano-photonics and enable entirely new devices that bring frequency metrology into a chip scale setting for compact applications such as space based optical clocks.
Load More